Solveeit Logo

Question

Question: In the table given below, dimensions and angles of various crystals are given. Complete the table by...

In the table given below, dimensions and angles of various crystals are given. Complete the table by filling the blanks.

Type of crystalDimensionAngles
(A).Cubica = b = cα=β=γ=p\alpha = \beta = \gamma = \underline{p}
(B)Tetragonalq\underline{q}α=β=γ=90\alpha = \beta = \gamma = 90{^\circ}
(C)Orthorhombicabca \neq b \neq cq\underline{q}
(D)HexagonalS\underline{S}α=β=90,γ=t\alpha = \beta = 90{^\circ},\gamma = \underline{t}

P q r s t

A

90α=bcα=β=γ=90a=bc12090{^\circ}\alpha = b \neq c\alpha = \beta = \gamma = 90{^\circ}a = b \neq c120{^\circ}

B

120α=b=cα=90,β=γ=120abc90120{^\circ}\alpha = b = c\alpha = 90{^\circ},\beta = \gamma = 120{^\circ}a \neq b \neq c90{^\circ}

C

90αbcα=β=γ=120a=bc9090{^\circ}\alpha \neq b \neq c\alpha = \beta = \gamma = 120{^\circ}a = b \neq c90{^\circ}

D

120αbcαβγ90ab=c120120{^\circ}\alpha \neq b \neq c\alpha \neq \beta \neq \gamma \neq 90{^\circ}a \neq b = c120{^\circ}

Answer

90α=bcα=β=γ=90a=bc12090{^\circ}\alpha = b \neq c\alpha = \beta = \gamma = 90{^\circ}a = b \neq c120{^\circ}

Explanation

Solution

For cubic, a = b = c,

α=β=γ=90\alpha = \beta = \gamma = 90{^\circ}

Tetragonal, α=bc,α=β=γ=90\alpha = b \neq c,\alpha = \beta = \gamma = 90{^\circ}

Orthorhombic ,

abc,α=β=γ=90a \neq b \neq c,\alpha = \beta = \gamma = 90{^\circ}

Hexagonal ,

a=bc,α=β=90,γ120a = b \neq c,\alpha = \beta = 90{^\circ},\gamma - 120{^\circ}