Solveeit Logo

Question

Physics Question on Atoms

In the spectrum of hydrogen, the ratio of the longest wavelength in the Lyman series to the longest wavelength in the Balmer series is

A

275\frac{27}{5}

B

527\frac{5}{27}

C

49\frac{4}{9}

D

94\frac{9}{4}

Answer

527\frac{5}{27}

Explanation

Solution

The wavelength of a spectral line in the
Lyman series is
1λL=R(1121n2),n=2,3,4,.......\frac{1}{\lambda_L}=R(\frac{1}{1^2}-\frac{1}{n^2}\bigg),n=2,3,4, .......
and that in the Balmer series is
1λB=R(1221n2),n=3,4,5,.....\frac{1}{\lambda_{B}}=R(\frac{1}{2^2}-\frac{1}{n^2}), n=3,4,5,.....
For the longest wavelength in the Lyman series,
n = 2
1λL=R(112122)=R(1114)=R(414)=3R4\therefore\quad\frac{1}{\lambda_{L}}=R\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)=R\left(\frac{1}{1}-\frac{1}{4}\right)=R\left(\frac{4-1}{4}\right)=\frac{3R}{4}
or λL=43R \lambda_L =\frac{4}{3R}
For the longest wavelength in the Balmer series,
n=3
1λB=R(122132)=R(1419)=R(9436)=5R36\therefore\quad\frac{1}{\lambda_{B}}=R\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=R\left(\frac{1}{4}-\frac{1}{9}\right)=R\left(\frac{9-4}{36}\right)=\frac{5R}{36}
or λB=365R\lambda_B= \frac{36}{5R}
Thus , λLλB=43R365R=43R×5R36=527\frac{\lambda_L}{\lambda_B}=\frac{\frac{4}{3R}}{\frac{36}{5R}}=\frac{4}{3R} \times \frac{5R}{36}=\frac{5}{27}