Solveeit Logo

Question

Question: In the shooting competition at Beijing a man could score \[5,4,3,2,1\] or 0 points for each shot. Th...

In the shooting competition at Beijing a man could score 5,4,3,2,15,4,3,2,1 or 0 points for each shot. Then the number of ways in which he could score 10 points in seven shot, is
(A) 6538
(B) 6548
(C) 6608
(D) None of these

Explanation

Solution

Hint : According to the given question, firstly assume number of shots be xi{x_i} and make the equation to calculate the number of ways that is coefficient of x10{x^{10}} in (x0+x1+x2+x3+x4+x5)7{\left( {{x^0} + {x^1} + {x^2} + {x^3} + {x^4} + {x^5}} \right)^7}
Then solve the equation by using binomial expansion and hence simplify using the combination by nCr=n!(nr)!r!^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}} to get the required result.

Complete step-by-step answer :
It is given that in the shooting competition at Beijing a man could score 5,4,3,2,15,4,3,2,1 or 0 points for each shot and we have to find out the number of ways in which he could score 10 points in seven shots.
Let us assume number of shots denoted by xi{x_i} and {x_i}:\left\\{ {0,1,2,3,4,5} \right\\}
As, it is given that there are 7 seven shots in 10 score points is given by
x1+x2+x3+x4+x5+x6+x7=10{x_1} + {x_2} + {x_3} + {x_4} + {x_5} + {x_6} + {x_7} = 10
So, we have to calculate the required number of ways
\Rightarrow Coefficient of x10{x^{10}} in (x0+x1+x2+x3+x4+x5)7{\left( {{x^0} + {x^1} + {x^2} + {x^3} + {x^4} + {x^5}} \right)^7}
As we know, x0=1{x^0} = 1 so we will substitute these values in the above equation. So, we get
\Rightarrow Coefficient of x10{x^{10}} in (1+x+x2+x3+x4+x5)7{\left( {1 + x + {x^2} + {x^3} + {x^4} + {x^5}} \right)^7}
Here, we will apply binomial expansion that is given by (1xn+11x)m{\left( {\dfrac{{1 - {x^{n + 1}}}}{{1 - x}}} \right)^m} . As, n=5n = 5 and m=7m = 7
On substituting the values we get,
\Rightarrow Coefficient of x10{x^{10}} in (1x5+11x)7{\left( {\dfrac{{1 - {x^{5 + 1}}}}{{1 - x}}} \right)^7}
After simplifying the above equation we get,
\Rightarrow Coefficient of x10{x^{10}} in (1x61x)7{\left( {\dfrac{{1 - {x^6}}}{{1 - x}}} \right)^7}
On separating numerator and denominator we get,
\Rightarrow Coefficient of x10{x^{10}} in (1x6)7(1x)7{\left( {1 - {x^6}} \right)^7}{\left( {1 - x} \right)^{ - 7}}
Opening (1x6)7{\left( {1 - {x^6}} \right)^7} as:
\Rightarrow Coefficient of x10{x^{10}} in (17C1x6+7C2x12+.....)7(1x)7{\left( {1 - 7{C_1}{x^6} + 7{C_2}{x^{12}} + .....} \right)^7}{\left( {1 - x} \right)^{ - 7}}
Rewriting the above equation as,
\Rightarrow 1×1 \times Coefficient of x10{x^{10}} in (1x)77×{\left( {1 - x} \right)^{ - 7}} - 7 \times coefficient of x4{x^4} in (1x)7{\left( {1 - x} \right)^{ - 7}}
10+71C717×4+71C71{ \Rightarrow ^{10 + 7 - 1}}{C_{7 - 1}} - 7{ \times ^{4 + 7 - 1}}{C_{7 - 1}}
On simplifying we get,
16C67×10C6{ \Rightarrow ^{16}}{C_6} - 7{ \times ^{10}}{C_6}
Opening nCr=n!(nr)!r!^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}
16!10!6!7×10!4!6!\Rightarrow \dfrac{{16!}}{{10!6!}} - 7 \times \dfrac{{10!}}{{4!6!}}
Now we will open the factorials
16×15×14×13×12×11×10!(10!)6×5×4×3×2×17×10×9×8×7×6!4×3×2×1(6!)\Rightarrow \dfrac{{16 \times 15 \times 14 \times 13 \times 12 \times 11 \times 10!}}{{\left( {10!} \right)6 \times 5 \times 4 \times 3 \times 2 \times 1}} - 7 \times \dfrac{{10 \times 9 \times 8 \times 7 \times 6!}}{{4 \times 3 \times 2 \times 1\left( {6!} \right)}}
Cancelling 10!10! and 6!6!
16×15×14×13×12×116×5×4×3×2×17×10×9×8×74×3×2×1\Rightarrow \dfrac{{16 \times 15 \times 14 \times 13 \times 12 \times 11}}{{6 \times 5 \times 4 \times 3 \times 2 \times 1}} - 7 \times \dfrac{{10 \times 9 \times 8 \times 7}}{{4 \times 3 \times 2 \times 1}}
On simplifying we get,
80087×210\Rightarrow 8008 - 7 \times 210
80081470\Rightarrow 8008 - 1470
On subtracting we get,
6538\Rightarrow 6538
So, the correct answer is “Option A”.

Note : To solve these types of questions you must remember how to expand the binomial expansion and calculate coefficient required in the question. Make the equations according to the given statements and hence put the values in the formulas very carefully.