Solveeit Logo

Question

Physics Question on Dimensional Analysis

In the relation P=aβeazkθ,pP =\frac{a}{\beta} e ^{-\frac{a z}{ k \theta}}, p is the pressure, zz the distance, kk is Boltzmann constant and θ\theta is the temperature, the dimensional formula of β\beta will be

A

M0L2T0M^0\,L^2\,T^0

B

ML2TML^2\,T

C

ML0T1ML^0\,T^{-1}

D

ML2T1ML^2\,T^{-1}

Answer

M0L2T0M^0\,L^2\,T^0

Explanation

Solution

In given equation, azkθ\frac{ az }{ k \theta} should be dimensionless
a=kθz\therefore a =\frac{ k \theta}{ z }
a=ML2T2K1×KL=MLT2\Rightarrow a =\frac{ ML ^{2} T ^{-2} K ^{-1} \times K }{ L }= MLT ^{-2}
And p=aβp=\frac{a}{\beta}
β=ap=MLT2ML1T2\Rightarrow \beta=\frac{a}{p}=\frac{M L T^{-2}}{M L^{-1} T^{-2}}
=M0L2T0=M^{0} \,L^{2}\, T^{0}