Solveeit Logo

Question

Question: In the reaction of the formation of sulphur trioxide by contact process; \(\text{ 2S}{{\text{O}}_{\t...

In the reaction of the formation of sulphur trioxide by contact process;  2SO2+O22SO3 \text{ 2S}{{\text{O}}_{\text{2}}}\text{+}{{\text{O}}_{\text{2}}}\rightleftharpoons \text{2S}{{\text{O}}_{\text{3}}}\text{ }, the rate of reaction was measured as  d[O2]dt=-2.5 !!×!! 10-4mol L-1 s-1 \text{ }\dfrac{\text{d}\left[ {{\text{O}}_{\text{2}}} \right]}{\text{dt}}\text{=-2}\text{.5 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}\text{ } . The rate of disappearance of [SO2]\left[ \text{S}{{\text{O}}_{\text{2}}} \right] in  mol L-1 s-1 \text{ mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}\text{ } will be:
(A)  3.75×104\text{ }-3.75\times {{10}^{-4}}
(B)  1.25×104\text{ }-1.25\times {{10}^{-4}}
(C)  2.50×104\text{ }-2.50\times {{10}^{-4}}
(D)  5.00×104\text{ }-5.00\times {{10}^{-4}}

Explanation

Solution

We know that according to kinetics, the rate of a reaction is equal to the rate of disappearance of the reactants or the rate of formation of products.
If a reaction is A + B  C + D \text{ A + B }\rightleftharpoons \text{ C + D },
Then the rate of this reaction is given as,
 d[A]dt=d[B]dt=d[C]dt=d[D]dt \text{ }\dfrac{-\text{d}\left[ \text{A} \right]}{\text{dt}}\text{=}\dfrac{-\text{d}\left[ \text{B} \right]}{\text{dt}}\text{=}\dfrac{\text{d}\left[ \text{C} \right]}{\text{dt}}\text{=}\dfrac{\text{d}\left[ \text{D} \right]}{\text{dt}}\text{ }.
Where, the [A]\left[ \text{A} \right] ,[B]\left[ \text{B} \right] , [C]\left[ \text{C} \right] and [D]\left[ \text{D} \right] are the concentration of reactant and product.

Complete step by step solution:
Chemical Kinetics is a branch of chemistry that deals with the study of the rate of a reaction.
We know that the rate of reaction is the rate of disappearance of reactants or the rate of formation of products.
For a reaction, the rate of reaction can be written in terms of the concentration of the product or reactant. For a balanced chemical reaction, the stoichiometric coefficients of the reactant and product are written in the denominator with their rate expression.
We are given with a reaction of SO2\text{S}{{\text{O}}_{\text{2}}} withO2{{\text{O}}_{\text{2}}} that producesSO3\text{S}{{\text{O}}_{\text{3}}}.
The reaction is as follows:
 2SO2+O22SO3 \text{ 2S}{{\text{O}}_{\text{2}}}\text{+}{{\text{O}}_{\text{2}}}\rightleftharpoons \text{2S}{{\text{O}}_{\text{3}}}\text{ }

From the reaction,
The rate of disappearance of reactants i.e. SO2\text{S}{{\text{O}}_{\text{2}}} would be equal to 1 2d[SO2]dt\dfrac{-1}{\text{ }2}\dfrac{\text{d}\left[ \text{S}{{\text{O}}_{\text{2}}} \right]}{\text{dt}} . Since the 2 molecules of  SO2 \text{ S}{{\text{O}}_{\text{2}}}\text{ }are taking part in the reaction.
We know that the rate of reaction of the reactant is equal. Thus, the rate of disappearance of SO2\text{S}{{\text{O}}_{\text{2}}} will is equal to the disappearance of O2{{\text{O}}_{\text{2}}} and equal to the formation ofSO3\text{S}{{\text{O}}_{\text{3}}}.
Therefore, the relation can be given as,
d[O2]dt = 12d[SO2]dt2.5 !!×!! 10-4molL-1s-1\dfrac{\text{d}\left[ {{\text{O}}_{\text{2}}} \right]}{\text{dt}}\text{ = }\dfrac{1}{2}\dfrac{\text{d}\left[ \text{S}{{\text{O}}_{\text{2}}} \right]}{\text{dt}}\text{= }-\text{2}\text{.5 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{mol}{{\text{L}}^{\text{-1}}}{{\text{s}}^{\text{-1}}}
Since, we are given that,
Rate of reaction = 2.5 !!×!! 10-4molL-1s-1\text{Rate of reaction =}~-\text{2}\text{.5 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{mol}{{\text{L}}^{\text{-1}}}{{\text{s}}^{\text{-1}}}
So, the rate of disappearance of [SO2]\left[ \text{S}{{\text{O}}_{\text{2}}} \right] will be,
 12d[SO2]dt2.5 !!×!! 10-4 mol L-1 s-1  d[SO2]dt= 2×(2.5 !!×!! 10-4mol L-1 s-1)  d[SO2]dt5.0 !!×!! 10-4 mol L-1 s-1 \begin{aligned} & \text{ }\dfrac{1}{2}\dfrac{\text{d}\left[ \text{S}{{\text{O}}_{\text{2}}} \right]}{\text{dt}}\text{= }-\text{2}\text{.5 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{ mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}} \\\ & \text{ }\dfrac{\text{d}\left[ \text{S}{{\text{O}}_{\text{2}}} \right]}{\text{dt}}\text{= 2}\times \text{(}-\text{2}\text{.5 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}) \\\ & \therefore \dfrac{\text{ d}\left[ \text{S}{{\text{O}}_{\text{2}}} \right]}{\text{dt}}\text{= }-5.0\text{ }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{ mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}} \\\ \end{aligned}
Therefore, the rate of disappearance of  [SO2] \text{ }\left[ \text{S}{{\text{O}}_{\text{2}}} \right]\text{ }will be5.0 !!×!! 10-4 mol L-1 s-1-5.0\text{ }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{ mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}.

Hence, (D) is correct.

Note: Remember that the rate of reaction is always a non-negative value. It can be zero or not but it must be an integer. The negative sign before the concentration of reactant is because the concentration of reactant decreases and for a product the concentration goes on the increase, thus it has a positive sign. Always start with a balanced chemical reaction.