Solveeit Logo

Question

Chemistry Question on Equilibrium

In the reaction; Fe(OH)3(s)Fe3+(aq)+3OH(aq) Fe ( OH )_{3( s )} \rightleftharpoons Fe ^{3+}{ }_{( aq )}+3 OH _{\text {(aq) }}^{-}, if the concentration of OHOH ^{-} ions is decreased by 14\frac{1}{4} times, then the equilibrium concentration of Fe3+Fe ^{3+} will increase by,

A

8 times

B

16 times

C

64 times

D

4 times

Answer

64 times

Explanation

Solution

The correct answer is C:64 times
Given relation,
Fe(OH)3(s)Fe3+(aq)+3OH(aq)Fe ( OH )_{3}(s) \rightleftharpoons Fe ^{3+}(a q)+3 OH ^{-}(a q)

Keq=[Fe3+][OH]3[Fe(OH)3]=[Fe3+][OH]31K_{ eq }=\frac{\left[ Fe ^{3+}\right]\left[ OH ^{-}\right]^{3}}{\left[ Fe ( OH )_{3}\right]}=\frac{\left[ Fe ^{3+}\right]\left[ OH ^{-}\right]^{3}}{1}

When [OH][OH^{-} ] is decreased by 14\frac{1}{4} times, KK becomes

Keq=[Fe3+](14[OH])3K_{ eq } =\left[ Fe ^{3+}\right]\left(\frac{1}{4} \cdot[\overrightarrow{ O } H ]\right)^{3}
=[Fe3+]164[OH]3=\left[ Fe ^{3+}\right] \frac{1}{64}\left[ OH ^{-}\right]^{3}

To keep the value of Keq K_{\text {eq }} constant, the [Fe3+]\left[ Fe ^{3+}\right] must be increased by 64 times so that KeqK_{ eq } remains as such.

Keq=64×164[Fe3+][OH]3K_{ eq }=64 \times \frac{1}{64}\left[ Fe ^{3+}\right]\left[ OH ^{-}\right]^{3}
Keq=[Fe3+][OH]3K_{ eq }=\left[ Fe ^{3+}\right]\left[ OH ^{-}\right]^{3}