Solveeit Logo

Question

Question: In the process \({{\rm{I}}_2} + {{\rm{I}}^ - } \to {{\rm{I}}_{\rm{3}}}^ - \), initially there are 2 ...

In the process I2+II3{{\rm{I}}_2} + {{\rm{I}}^ - } \to {{\rm{I}}_{\rm{3}}}^ - , initially there are 2 moles I2{{\rm{I}}_2}and 2 mole of I{\rm{I}}. But at equilibrium, due to addition of AgNO3(aq){\rm{AgN}}{{\rm{O}}_{\rm{3}}}\left( {aq} \right), 1.75 mole of yellow ppt. is obtained. Kc{K_c}for the process is (Vflask=1  dm3)\left( {{V_{flask}} = 1\;{\rm{d}}{{\rm{m}}^3}} \right)nearly
A. 0.08
B. 0.02
C. 0.16
D. 0.12

Explanation

Solution

First, we have to write the ICE table for the reaction, I2+II3{{\rm{I}}_2} + {{\rm{I}}^ - } \to {{\rm{I}}_{\rm{3}}}^ - using the values provided in the question. Then, we calculate the Kc{K_c}value for the reaction.

Complete step-by-step answer:
Given the moles of I2{{\rm{I}}_2}is 2 and moles of I is 2 initially. Now, we write the ICE table. We take x as the change of moles of reactants.

For the reactionI2+II3{{\rm{I}}_2} + {{\rm{I}}^ - } \to {{\rm{I}}_{\rm{3}}}^ -
I2{{\rm{I}}_2}I{{\rm{I}}^ - }
At t=0t = 02
At equilibrium2x2 - x

At equilibrium, addition of AgNO3(aq){\rm{AgN}}{{\rm{O}}_{\rm{3}}}\left( {aq} \right) produces 1.75 mole of yellow ppt. Silver nitrate (AgNO3)\left( {{\rm{AgN}}{{\rm{O}}_{\rm{3}}}} \right) reacts with I{{\rm{I}}^ - }, produces silver iodide (AgI)\left( {{\rm{AgI}}} \right)which is yellow in color. So, the reaction is,

AgNO3+IAgI{\rm{AgN}}{{\rm{O}}_{\rm{3}}} + {{\rm{I}}^ - } \to {\rm{AgI}} \downarrow

Given that the moles of silver iodide formed is 1.75 mole. So, the change of moles of I2{{\rm{I}}_2} and I{{\rm{I}}^ - } is equal to 1.75 mole.

2x=1.75\x=0.25\begin{array}{c}2 - x = 1.75\\\x = 0.25\end{array}

So, moles of I3{{\rm{I}}_{\rm{3}}}^ - is 0.25.
Now, we calculate the moles of I2{{\rm{I}}_2} at equilibrium using the value of x.

Molesatequilibrium=2x =20.25 =1.75\begin{array}{c}{\rm{Moles}}\,{\rm{at equilibrium}} = 2 - x\\\ = 2 - 0.25\\\ = 1.75\end{array}

So, the moles at equilibrium of I2{{\rm{I}}_2} and I{{\rm{I}}^ - } is 1.75.
Now, we calculate the equilibrium concentration.
Kc=Concentrationof  productConcentrationof  reactant =moleofproductVolumemole  ofproductVolume\begin{array}{c}{K_c} = \dfrac{{{\rm{Concentration}}\,{\rm{of}}\;{\rm{product}}}}{{{\rm{Concentration}}\,{\rm{of}}\;{\rm{reactant}}}}\\\ = \dfrac{{\dfrac{{{\rm{mole of product}}}}{{{\rm{Volume}}}}}}{{\dfrac{{{\rm{mole}}\;{\rm{of product}}}}{{{\rm{Volume}}}}}}\end{array}

Now, we write the equilibrium concentration expression for the I2+II3{{\rm{I}}_2} + {{\rm{I}}^ - } \to {{\rm{I}}_{\rm{3}}}^ - .
Kc=[I3][I2][I]{K_c} = \dfrac{{\left[ {{{\rm{I}}_{\rm{3}}}^ - } \right]}}{{\left[ {{{\rm{I}}_2}} \right]\left[ {{{\rm{I}}^ - }} \right]}} …… (1)

Moles of I2{{\rm{I}}_2} and I{{\rm{I}}^ - } is 1.75 and moles of I3{{\rm{I}}_{\rm{3}}}^ - is 0.25 and volume given is 1  dm31\;{\rm{d}}{{\rm{m}}^3}.

Kc=0.25  mol1  dm31.75  mol1  dm3×1.75  mol1  dm3 =0.082\begin{array}{c}{K_c} = \dfrac{{\dfrac{{0.25\;{\rm{mol}}}}{{1\;{\rm{d}}{{\rm{m}}^3}}}}}{{\dfrac{{1.75\;{\rm{mol}}}}{{1\;{\rm{d}}{{\rm{m}}^3}}} \times \dfrac{{1.75\;{\rm{mol}}}}{{1\;{\rm{d}}{{\rm{m}}^3}}}}}\\\ = 0.082\end{array}
Hence, the correct option is A.

Note: From the given mole of ppt. formed of silver iodide at equilibrium, we get to know about the change of moles of I{{\rm{I}}^ - } and I2{{\rm{I}}_2}. Putting the value of moles of I{{\rm{I}}^ - }, I2{{\rm{I}}_2}, I3{{\rm{I}}_{\rm{3}}}^ - and volume in the expression of equilibrium concentration gives the value of Kc{K_c}.