Question
Question: In the mean-value theorem \(\frac{f(b) - f(a)}{b - a} = f^{'}(c)\), if \(a = 0\), \(b = \frac{1}{2}\...
In the mean-value theorem b−af(b)−f(a)=f′(c), if a=0, b=21 and f(x)=x(x−1)(x−2), the value of c is
A
1−615
B
1+15
C
1−621
D
1+21
Answer
1−621
Explanation
Solution
From mean value theorem f′(c)=b−af(b)−f(a)
a=0,f(a)=0 ⇒ b=21,f(b)=83
f′(x)=(x−1)(x−2)+x(x−2)+x(x−1),
f′(c)=(c−1)(c−2)+c(c−2)+c(c−1)
= c2−3c+2+c2−2c+c2−c, f′(c)=3c2−6c+2
According to mean value theorem
⇒ f′(c)=b−af(b)−f(a)
⇒ 3c2−6c+2=(21)−0(83)−0=43⇒3c2−6c+45=0
c=2×36±36−15=66±21=1±621.