Solveeit Logo

Question

Question: In the integral \(\int{\dfrac{\cos 8x+1}{\cot 2x-\tan 2x}dx=A\cos 8x+k}\), where \(k\) is an arbitra...

In the integral cos8x+1cot2xtan2xdx=Acos8x+k\int{\dfrac{\cos 8x+1}{\cot 2x-\tan 2x}dx=A\cos 8x+k}, where kk is an arbitrary constant, then the value of kk is equal to
A. 116-\dfrac{1}{16}
B. 116\dfrac{1}{16}
C. 18\dfrac{1}{8}
D. 18-\dfrac{1}{8}

Explanation

Solution

We will first substitute the value of trigonometric ratios cot2x=cos2xsin2x\cot 2x=\dfrac{\cos 2x}{\sin 2x}, tan2x=sin2xcos2x\tan 2x=\dfrac{\sin 2x}{\cos 2x} in the denominator of the given integral. After substituting the values we will simplify the integral and then we will use the formulas cos2x=cos2xsin2x\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x and sin2x=2sinxcosx\sin 2x=2\sin x\cos x in the integral and then we will integrated the simplified equation and compare the result with the given equation to find the value of AA.

Complete step by step answer:
Given that, cos8x+1cot2xtan2xdx=Acos8x+k\int{\dfrac{\cos 8x+1}{\cot 2x-\tan 2x}dx=A\cos 8x+k}
Taking L.H.S into consideration, then
L.H.S=cos8x+1cot2xtan2xdxL.H.S=\int{\dfrac{\cos 8x+1}{\cot 2x-\tan 2x}dx}
We know that cot2x=cos2xsin2x\cot 2x=\dfrac{\cos 2x}{\sin 2x}, tan2x=sin2xcos2x\tan 2x=\dfrac{\sin 2x}{\cos 2x} substituting these values in the above equation, then we will get
L.H.S=cos8x+1cos2xsin2xsin2xcos2xdxL.H.S=\int{\dfrac{\cos 8x+1}{\dfrac{\cos 2x}{\sin 2x}-\dfrac{\sin 2x}{\cos 2x}}dx}
Simplifying the denominator by taking LCM of sin2x\sin 2x and cos2x\cos 2x, then we will get
L.H.S=cos8x+1cos2x.cos2xsin2x.sin2xsin2x.cos2xdxL.H.S=\int{\dfrac{\cos 8x+1}{\dfrac{\cos 2x.\cos 2x-\sin 2x.\sin 2x}{\sin 2x.\cos 2x}}dx}
We know that a.a=a2a.a={{a}^{2}} and writing the cos8x\cos 8x as cos2(4x)\cos 2\left( 4x \right), then we will get
L.H.S=cos2(4x)+1cos22xsin22xsin2x.cos2xdxL.H.S=\int{\dfrac{\cos 2\left( 4x \right)+1}{\dfrac{{{\cos }^{2}}2x-{{\sin }^{2}}2x}{\sin 2x.\cos 2x}}dx}
We have the formula cos2x=2cos2x1=cos2xsin2x\cos 2x=2{{\cos }^{2}}x-1={{\cos }^{2}}x-{{\sin }^{2}}x, now the above equation modified as
L.H.S=2cos24x1+1cos2(2x)sin2x.cos2xdx L.H.S=2cos24x(sin2x.cos2x)cos4xdx L.H.S=cos4x(2sin2x.cos2x)dx \begin{aligned} & L.H.S=\int{\dfrac{2{{\cos }^{2}}4x-1+1}{\dfrac{\cos 2\left( 2x \right)}{\sin 2x.\cos 2x}}dx} \\\ & \Rightarrow L.H.S=\int{\dfrac{2{{\cos }^{2}}4x\left( \sin 2x.\cos 2x \right)}{\cos 4x}dx} \\\ & \Rightarrow L.H.S=\int{\cos 4x\left( 2\sin 2x.\cos 2x \right)dx} \\\ \end{aligned}
We have the value of 2sinx.cosx=sin2x2\sin x.\cos x=\sin 2x, then we will get
L.H.S=cos4x(sin2(2x))dx L.H.S=cos4x.sin4x.dx \begin{aligned} & \Rightarrow L.H.S=\int{\cos 4x\left( \sin 2\left( 2x \right) \right)}dx \\\ & \Rightarrow L.H.S=\int{\cos 4x.\sin 4x.dx} \\\ \end{aligned}
Multiplying and dividing the above equation with 22, then we will have
L.H.S=122.sin4x.cos4xdx\Rightarrow L.H.S=\dfrac{1}{2}\int{2.\sin 4x.\cos 4x}dx
Again, using the formula 2sinx.cosx=sin2x2\sin x.\cos x=\sin 2x in the above equation, then we will get
L.H.S=12sin2(4x)dx L.H.S=12sin8x.dx \begin{aligned} & \Rightarrow L.H.S=\dfrac{1}{2}\int{\sin 2\left( 4x \right)}dx \\\ & \Rightarrow L.H.S=\dfrac{1}{2}\int{\sin 8x.dx} \\\ \end{aligned}
We know that sinax.dx=cosaxa+C\int{\sin ax.dx}=-\dfrac{\cos ax}{a}+C, then we will get
L.H.S=12[cos8x8+C] L.H.S=116cos8x+k \begin{aligned} & L.H.S=\dfrac{1}{2}\left[ -\dfrac{\cos 8x}{8}+C \right] \\\ & \Rightarrow L.H.S=-\dfrac{1}{16}\cos 8x+k \\\ \end{aligned}
Now comparing the LHS and RHS of the given equation.
116cos8x+k=Acos8x+k-\dfrac{1}{16}\cos 8x+k=A\cos 8x+k
Equating on both sides we will get the value of AA as A=116A=-\dfrac{1}{16}.

So, the correct answer is “Option A”.

Note: When we are dealing with the integrals including the trigonometric ratios, we need to know about some basic trigonometric formulas, like trigonometric identities, half angle formulas etc. Some of the formulas are listed below
sin2xcos2x=1 sec2xtan2x=1 csc2xcot2x=1 tanx=sinxcosx secx=1cosx cscx=1sinx cotx=1tanx=cosxsinx sin2x=2sinxcosx cos2x=2cos2x1=12sin2x=cos2xsin2x tan2x=2tanx1tan2x \begin{aligned} & {{\sin }^{2}}x-{{\cos }^{2}}x=1 \\\ & {{\sec }^{2}}x-{{\tan }^{2}}x=1 \\\ & {{\csc }^{2}}x-{{\cot }^{2}}x=1 \\\ & \tan x=\dfrac{\sin x}{\cos x} \\\ & \sec x=\dfrac{1}{\cos x} \\\ & \csc x=\dfrac{1}{\sin x} \\\ & \cot x=\dfrac{1}{\tan x}=\dfrac{\cos x}{\sin x} \\\ & \sin 2x=2\sin x\cos x \\\ & \cos 2x=2{{\cos }^{2}}x-1=1-2{{\sin }^{2}}x={{\cos }^{2}}x-{{\sin }^{2}}x \\\ & \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} \\\ \end{aligned}