Solveeit Logo

Question

Question: In the hyperbola \(4{{x}^{2}}-9{{y}^{2}}=36\), find the axes, the coordinates of the foci, the eccen...

In the hyperbola 4x29y2=364{{x}^{2}}-9{{y}^{2}}=36, find the axes, the coordinates of the foci, the eccentricity, and the latus rectum.

Explanation

Solution

Compare the given equation of hyperbola with the general equation x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1. Get the values of a and b and find the quantities mentioned.

Complete step-by-step solution:
We know the standard equation of hyperbola
x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1……………….. (1)
From the question, the equation of hyperbola
4x29y2=364{{x}^{2}}-9{{y}^{2}}=36………………… (2)
Divide the entire equation (2) by 36
4x29y236=3636 4x2369y236=1 x29y24=1 x232y222=1...............(3) \begin{aligned} & \dfrac{4{{x}^{2}}-9{{y}^{2}}}{36}=\dfrac{36}{36} \\\ & \Rightarrow \dfrac{4{{x}^{2}}}{36}-\dfrac{9{{y}^{2}}}{36}=1 \\\ & \Rightarrow \dfrac{{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{4}=1 \\\ & \Rightarrow \dfrac{{{x}^{2}}}{{{3}^{2}}}-\dfrac{{{y}^{2}}}{{{2}^{2}}}=1...............\left( 3 \right) \\\ \end{aligned}
Now compare equation (1) with equation (3).
We get a = 3 and b = 2.
The transverse axis is a line segment that passes through the centre of the hyperbola and has vertices as its end points. The foci lie on the line that contains the transverse axis. The conjugate axis is perpendicular to the transverse axis and has the co – vertices as its endpoints.
\therefore Transverse axis = 2a
Conjugate axis = 2b
\therefore The coordinates of the vertices are (± ae,0)\left( \pm \ ae, \, 0 \right) and co – vertices are (0,± b)\left( 0,\pm \ b \right)
\therefore Transverse axis =2a=2×3=6=2a=2\times 3=6
Conjugate axis =2b=2×2=4 2b = 2 \times 2 = 4
Eccentricity of hyperbola is given by:
e=1+b2a2, where a>b e=1+2232=1+49=9+49=139 e=139 \begin{aligned} & e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}},\ where\ a>b \\\ &\Rightarrow e=\sqrt{1+\dfrac{{{2}^{2}}}{{{3}^{2}}}}=\sqrt{1+\dfrac{4}{9}}=\sqrt{\dfrac{9+4}{9}}=\sqrt{\dfrac{13}{9}} \\\ & \therefore e=\sqrt{\dfrac{13}{9}} \\\ \end{aligned}
We know the coordinates of foci as
S=(ae,0) and S=(ae,0) S=(3139,0) and S=(3139,0) (3139,0)=S and S=(3139,0) S=(13,0) and S=(13,0) \begin{aligned} & S=\left( ae,0 \right)\ and\ S'=\left( -ae,0 \right) \\\ & \therefore S=\left( 3\sqrt{\dfrac{13}{9}},0 \right)\ and\ S'=\left( -3\sqrt{\dfrac{13}{9}},0 \right) \\\ & \Rightarrow \left( 3\sqrt{\dfrac{13}{9}},0 \right)=S \\\ & and\ S'=\left( -3\sqrt{\dfrac{13}{9}},0 \right) \\\ & \therefore S=\left( \sqrt{13},0 \right)\ and \ S'=\left( -\sqrt{13},0 \right) \\\ \end{aligned}
(±13,0)\therefore \left( \pm \sqrt{13},0 \right) are the coordinates of foci.
The length of latus rectum =2b2a=2×223=2×43=83=\dfrac{2{{b}^{2}}}{a}=\dfrac{2\times {{2}^{2}}}{3}=\dfrac{2\times 4}{3}=\dfrac{8}{3}

Note: As you are asked to find the foci and other factors of the hyperbola, it is important that you remember the basic formulas of the hyperbola. Similarly, learn the basic properties of parabolas as well. In this particular question, for the case, take the equation as, a>b,e=1+a2b2a>b,e=\sqrt{1+\dfrac{{{a}^{2}}}{{{b}^{2}}}}
Similarly in case of: $a