Solveeit Logo

Question

Mathematics Question on Binary operations

In the group (Q+,) (Q^+ ,\star ) of positive rational numbers w.r.t. the binary operation \star defined by ab=ab3,a,bQ+a^{\star} b=\frac {ab}{3} , \forall a,b \in Q^{+} the solution of the equation 5x=415 ^{\star} x=4^{-1} in Q+Q^+ is

A

2720\frac {27}{20}

B

2027\frac {20}{27}

C

120\frac {1}{20}

D

2020

Answer

2720\frac {27}{20}

Explanation

Solution

Let ee is the identity element of Q+Q^{+}
then, ea=a,aQ+e^{*} a=a, \forall a \in Q^{+}
ea3=a\frac{e a}{3} =a
left[ab=ab3]left[\because a^{*} b=\frac{a b}{3}]
e=3\therefore\, e=3
Again, let bb be the inverse of aa, then ab=ea^{*} b =e
ab3=3\frac{ab}{3}=3
[e=4][\because e=4]
b=9ab=\frac{9}{a}
\therefore Inverse of 4 is 94\frac{9}{4}.
From the given condition, 5x=415^{*}x=4^{-1}
5x3=94\Rightarrow\, \frac{5 x}{3}=\frac{9}{4}
x=2720\Rightarrow \,x=\frac{27}{20}