Solveeit Logo

Question

Question: In the given figure, lines XY and MN intersect at O. If \(\angle POY = {90^ \circ }\) and a:b = 2 : ...

In the given figure, lines XY and MN intersect at O. If POY=90\angle POY = {90^ \circ } and a:b = 2 : 3, then XON\angle XON is equal to……..

A. 126{126^ \circ }
B. 30{30^ \circ }
C. 90{90^ \circ }
D. 180{180^ \circ }

Explanation

Solution

Hint:For solving this question, we use the concept of linear pair of angles. We will use axiom1 of linear pair of angles for finding out the value of a and b. As given a:b = 2:3, a = 2x, b = 3x, adding a and b and POY\angle POYsum should be equal to 180{180^ \circ }. Similarly applying axiom1 on b and c we will be able to find the value of angle XON\angle XON.

Complete step-by-step answer:
Linear pair of angles: If non common arms of two adjacent angles form a line, then these angles are called linear pairs of angles. There are basically two axioms for linear pair of angles known as linear pair axioms they are as follow:
Axiom1: If a ray stands on a line, then the sum of two adjacent angles so formed is 180°i.e, the sum of the linear pair is 180°. Axiom2: If the sum of two adjacent angles is 180° then the two non common arms of the angles form a line.

Given,
POY=90.. (1)\angle POY = {90^ \circ }\,\,\,\,\,\, \ldots ..{\text{ }}\left( 1 \right)
a:b=2:3.. (2)a:b = 2:3\,\,\,\,\,\,\, \ldots ..{\text{ }}\left( 2 \right)
Let the common ratio between a and b be x, therefore, a = 2x, b = 3x.
According to the question: POY+POX=180.. (3)\angle POY + \angle POX = {180^ \circ }\,\,\,\,\,\,\, \ldots ..{\text{ }}\left( 3 \right) [By linear pair axiom]
Given, POX=a+b.. (4)\angle POX = a + b\,\,\,\,\, \ldots ..{\text{ }}\left( 4 \right)
Substituting equation (4) in equation (3), we get,
POY  + a + b = 180.. (5)\Rightarrow \angle POY\; + {\text{ }}a{\text{ }} + {\text{ }}b{\text{ }} = {\text{ }}{180^ \circ }\,\,\,\,\, \ldots ..{\text{ }}\left( 5 \right)
Substituting equation (1) in equation (5), we get,
90+ a + b = 180\Rightarrow 90^\circ + {\text{ }}a{\text{ }} + {\text{ }}b{\text{ }} = {\text{ }}{180^ \circ }
a + b = 90\Rightarrow a{\text{ }} + {\text{ }}b{\text{ }} = {\text{ }}{90^ \circ } .....(6).....(6)
Substituting value of a = 2x and b =3x in equation (6), we get,

{ \Rightarrow 5x{\text{ }} = {\text{ }}{{90}^ \circ }} \\\ { \Rightarrow x{\text{ }} = {\text{ }}{{18}^ \circ }} \end{array}$$ Therefore, $ \Rightarrow a = 2x = 2({18^ \circ }) = {36^ \circ }$ $ \Rightarrow b = 3x = 3({18^ \circ }) = {54^ \circ }\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,.....\,(7)$ Now, OX is a ray on the line MON. $$\angle XOM{\text{ }} + \angle XON = {180^ \circ }$$ $$\angle XOM = b,\,\angle XON = c$$ $$b{\text{ }} + {\text{ }}c{\text{ }} = {\text{ }}{180^ \circ }\,\,\,\,\,\,\,\,\,\,.....(8)$$ (by Linear Pair axiom) Substituting equation (7) in equation (8), we get, $$\begin{array}{*{20}{l}} { \Rightarrow {{54}^ \circ } + c = {{180}^ \circ }} \\\ { \Rightarrow c = {{126}^ \circ }} \end{array}$$ Therefore, the value of c = $${126^ \circ }$$ Hence, the correct answer is option (A.) ${126^ \circ }$. Note: The most common mistake while solving this type of questions, occurs when we calculate angles using axioms of linear pair of angles. Another method to find out the value of $\angle XON$ is by adding $${90^ \circ }$$ to a.