Question
Mathematics Question on Trigonometric Ratios
In the given figure find tan P - cot R
Answer
Applying Pythagoras theorem for ΔPQR, we obtain
(PR)2=(PQ)2+(QR)2
(13 cm)2=(12 cm)2+(QR)2
169 cm2=144 cm2+(QR)2
25 cm2=(QR)2
QR=5 cm
\text{ tan P} = \frac{\text{Side}\ \text{ Opposite}\ \text{ to}\ ∠P }{\text{Side}\ \text{ Adjacent}\ \text{ to}\ ∠P}$$=\frac{QR}{PQ}=\frac{5}{12}
cot R=Side Opposite to ∠RSide Adjacent to ∠R =PQQR=125
tan P - cot R =125−125=0