Solveeit Logo

Question

Mathematics Question on Trigonometric Ratios

In the given figure find tan P - cot R
In the given figure find tan P - cot R

Answer

Applying Pythagoras theorem for ΔPQR,ΔPQR, we obtain
(PR)2=(PQ)2+(QR)2(PR)^ 2 = (PQ)^ 2 +( QR)^ 2
(13 cm)2=(12 cm)2+(QR)2(13 \ cm) ^2 = (12\ cm)^ 2 + (QR)^ 2
169 cm2=144 cm2+(QR)2169 \ cm^2 = 144 \ cm^2 + (QR)^ 2
25 cm2=(QR)225\ cm^2 = (QR)^ 2
QR=5 cmQR = 5 \ cm
In the given figure find tan P - cot R

\text{ tan P} = \frac{\text{Side}\ \text{ Opposite}\ \text{ to}\ ∠P }{\text{Side}\ \text{ Adjacent}\ \text{ to}\ ∠P}$$=\frac{QR}{PQ}=\frac{5}{12}
 cot R=Side Adjacent  to RSide  Opposite  to R\text{ cot R} = \frac{\text{Side}\ \text{Adjacent}\ \text{ to}\ ∠R }{\text{Side}\ \text{ Opposite}\ \text{ to}\ ∠R} =QRPQ=512=\frac{QR}{PQ}=\frac{5}{12}

tan P - cot R =512512=0=\frac{ 5}{12}-\frac{5}{12}=0