Solveeit Logo

Question

Physics Question on Ideal gas equation

In the given figure container A holds an ideal gas at a pressure of 50×105Pa 50\times 10^{5}\, Pa and a temperature of 300K300 \,K. It is connected by a thin tube (and a closed) container BB, with four times the volume of AA. Container BB holds same at a pressure of 1.0×105Pa 1.0\times 10^{5} \, Pa and a temperature of 400K400 \,K. The valve is open allow the pressures to equalize, but the temperature of each container constant at its initial value. The final pressure in the two containers will be to

A

1.5×105Pa 1.5\times 10^{5} \, Pa

B

2.5×105Pa 2.5\times 10^{5}\, Pa

C

2.1×105Pa 2.1\times 10^{5} \, Pa

D

3.5×105Pa 3.5\times 10^{5} \, Pa

Answer

1.5×105Pa 1.5\times 10^{5} \, Pa

Explanation

Solution

The correct option is(A): 1.5×105Pa1.5\times 10^{5} \, Pa.

From ideal gas law For container A,n1=p1V1RT1A, n_{1}=\frac{p_{1} V_{1}}{R T_{1}}
For container BB, n2=p2V2RT2n_{2}=\frac{p_{2} V_{2}}{R T_{2}}
After opening the value, xx moles of gas stream from container AA to container BB such that both container equalize at pressure pp.
Number of moles in container AA has changed to n1xn_{1}-x,
i.e., (n1x)=pV1RT1\left(n_{1}-x\right)=\frac{p \cdot V_{1}}{R \cdot T_{1}}
x=n1=pV1RT1=(p1p)V1RT1...\therefore x=n_{1}=\frac{p \cdot V_{1}}{R \cdot T_{1}}=\frac{\left(p_{1}-p\right) \cdot V_{1}}{R \cdot T_{1}} ...(i)
Number of moles in container 66 has changed to n2+xn_{2}+x,
therefore (n2+x)=p2V2RT2\left(n_{2}+x\right)=\frac{p_{2} \cdot V_{2}}{R \cdot T_{2}}
x=pV2RT2n2=(ppz)V2RT2..\therefore x=\frac{p \cdot V_{2}}{R \cdot T_{2}}-n_{2}=\frac{\left(p-p_{z}\right) V_{2}}{R \cdot T_{2}} \ldots . . (ii)
Equating Eqs (i) and (ii), we get
(p1p)V1RT1=(pp2)V2RT2\frac{\left(p_{1}-p\right) \cdot V_{1}}{R \cdot T_{1}}=\frac{\left(p-p_{2}\right) \cdot V_{2}}{R \cdot T_{2}}
\Rightarrow (p1p)=(pp2)(V2V1)(T1T2)\left(p_{1}-p\right)=\left(p-p_{2}\right) \cdot\left(\frac{V_{2}}{V_{1}}\right) \cdot\left(\frac{T_{1}}{T_{2}}\right)
The pressure changes in the two containers are proportional
(p1p)=(pp2).K\left(p_{1}-p\right)=\left(p-p_{2}\right) . K
with K=(V2V1)(T1T2)K=\left(\frac{V_{2}}{V_{1}}\right) \cdot\left(\frac{T_{1}}{T_{2}}\right)
=4(300400)=3=4\left(\frac{300}{400}\right)=3
p=p1+p2K1+K=5×105+1×1051+3p=\frac{p_{1}+p_{2} \cdot K}{1+K}=\frac{5 \times 10^{5}+1 \times 10^{5}}{1+3}
=6×1054=1.5×105Pa=\frac{6 \times 10^{5}}{4}=1.5 \times 10^{5} Pa