Solveeit Logo

Question

Mathematics Question on Mensuration

In the given diagram, two circles pass through each other's centre. If the radius of each circle is 2, then what is the perimeter of the region marked B?
Two Overlap Circles

A

(83)π(\frac{8}{3})\pi

B

(45)π(\frac{4}{5})\pi

C

4π4\pi

D

(53)π(\frac{5}{3})\pi

Answer

(83)π(\frac{8}{3})\pi

Explanation

Solution


Two circles with centers A and A' and having radius = 2 cm
BAC=120(since ABA’ forms an equilateral triangle)and length of an arc=θ360×2πr\angle BAC = 120^\circ \, \text{(since ABA' forms an equilateral triangle)} \, \text{and length of an arc} = \frac{\theta}{360^\circ} \times 2\pi r
Perimeter of shaded portion=2×(length of arc BC)\text{Perimeter of shaded portion} = 2 \times \left( \text{length of arc BC} \right)
=2×(120360×2πr)= 2 \times \left( \frac{120^\circ}{360^\circ} \times 2\pi r \right)
=2×(13×2π×2)= 2 \times \left( \frac{1}{3} \times 2\pi \times 2 \right)
=2×4π3=8π3= 2 \times \frac{4\pi}{3} = \frac{8\pi}{3}
The correct answer is (A) : (8/3) π