Solveeit Logo

Question

Physics Question on LCR Circuit

In the given circuit, the AC source has ? = 100 rad/s. Considering the inductor and capacitor to be ideal, the correct choice(s) is(are)

A

The current through the circuit, I is 0.3 A

B

The current through the circuit, I is 0.32A0.3 \, \sqrt{2}A

C

The voltage across 100Ω100 \Omega resistor = 102V10 \sqrt{2}V

D

The voltage across 50Ω50 \Omega resistor = 10 V

Answer

The voltage across 100Ω100 \Omega resistor = 102V10 \sqrt{2}V

Explanation

Solution

Circuit 1
Xc=1ωC=100Ω\, \, \, \, \, \, \, \, \, X_c = \frac{1}{\omega C} = 100 \Omega
Z1=(100)2+(100)2\therefore \, \, \, \, \, \, \, \, Z_1 = \sqrt{(100)^2 + (100)^2}
=1002Ω\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, = 100 \sqrt{2} \, \Omega
ϕ1=cos1(R1Z1)=45\, \, \, \, \, \, \, \, \, \, \, \, \, \phi_1 = cos^{-1} \bigg( \frac{R_1}{Z_1}\bigg) = 45^{\circ}
In this circuit current leads the voltage.
I1=VZ1=201002=152A\, \, \, \, \, \, \, \, \, \, I_1 = \frac{V}{Z_1} = \frac{20}{100 \sqrt{2}} = \frac{1}{5 \sqrt{2}} A
V100Ω=(100)I1=(100)152V\, \, \, \, \, \, \, \, \, V_{100 \Omega} = (100) I_1 = (100) \frac{1}{5 \sqrt{2}} V
=102V\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, = 10 \sqrt{2} V
Circuit 2
XL=ωL=(100)(0.5)=50Ω\, \, \, \, \, \, \, \, \, \, \, \, X_L = \omega L = (100)(0.5) = 50 \Omega
Z2=(50)2+(50)2=502Ω\, \, \, \, \, \, \, \, \, \, \, \, \, Z_2 = \sqrt{(50)^2 + (50)^2} = 50\sqrt{2} \Omega
ϕ1=cos1(R1Z1)=45\, \, \, \, \, \, \, \, \, \, \, \, \, \phi_1 = cos^{-1} \bigg( \frac{R_1}{Z_1}\bigg) = 45^{\circ}
In this circuit voltage leads the current.
I2=VZ2=20502=25A\, \, \, \, \, \, \, \, \, \, I_2 = \frac{V}{Z_2} = \frac{20}{50 \sqrt{2}} = \frac{\sqrt{2}}{5} A
V50Ω=(50)I2=50(25)=102V\, \, \, \, \, \, \, \, \, V_{50 \Omega} = (50) I_2 = 50 \bigg( \frac{ \sqrt{2}}{5}\bigg) = 10\sqrt{2} V
Further, I1I_1 and I2I_2 have a mutual phase difference of 9090^{\circ}
I=I2,+I22=0.34I = \sqrt{I^2 , + I^2_2} = 0.34