Solveeit Logo

Question

Physics Question on Zener Diodes

In the given circuit if the power rating of Zener diode is 10 mW, the value of series resistance Rs to regulate the input unregulated supply is :
Circuit

A

5kΩ

B

10Ω

C

1kΩ

D

Non of these

Answer

Non of these

Explanation

Solution

Given:
Vs=8V,Vz=5V,RL=1kΩV_s = 8V, \quad V_z = 5V, \quad R_L = 1k\Omega

Power across the Zener diode:

Pd=10mW,Vz=5V    Iz=PdVz=10×1035=2mAP_d = 10 \, \text{mW}, \quad V_z = 5V \implies I_z = \frac{P_d}{V_z} = \frac{10 \times 10^{-3}}{5} = 2 \, \text{mA}

Current through the load resistor:

IL=VzRL=5V1kΩ=5mAI_L = \frac{V_z}{R_L} = \frac{5V}{1k\Omega} = 5 \, \text{mA}

Maximum current through the Zener diode:

Izmax=2mAI_{z_{max}} = 2 \, \text{mA}

Applying KCL at the junction:

Is=IL+Iz=5mA+2mA=7mAI_s = I_L + I_z = 5 \, \text{mA} + 2 \, \text{mA} = 7 \, \text{mA}

The series resistance RsR_s is given by:

Rs=VsVzIs=8V5V7mA=37kΩR_s = \frac{V_s - V_z}{I_s} = \frac{8V - 5V}{7 \, \text{mA}} = \frac{3}{7} k\Omega

Minimum current calculations:

For the minimum current through the Zener diode:

Izmin=0mA(to ensure Zener regulation)I_{z_{min}} = 0 \, \text{mA} \quad \text{(to ensure Zener regulation)}

Total current through the circuit:

Ismin=IL=5mAI_{s_{min}} = I_L = 5 \, \text{mA}

The corresponding series resistance RsR_s for minimum current is given by:

Rsmin=VsVzIsmin=8V5V5mA=35kΩR_{s_{min}} = \frac{V_s - V_z}{I_{s_{min}}} = \frac{8V - 5V}{5 \, \text{mA}} = \frac{3}{5} k\Omega

Conclusion:

Thus, the value of the series resistance RsR_s must satisfy:

37kΩ<Rs<35kΩ\frac{3}{7} k\Omega < R_s < \frac{3}{5} k\Omega

Therefore, the suitable range for RsR_s is between 37kΩ\frac{3}{7} k\Omega and 35kΩ\frac{3}{5} k\Omega.