Solveeit Logo

Question

Question: In the given cell representation $Zn|Zn^{2+}(1.0M)||H^+(a M)|H_2(1 Bar)|Pt \quad E = +0.4V$ Given $...

In the given cell representation ZnZn2+(1.0M)H+(aM)H2(1Bar)PtE=+0.4VZn|Zn^{2+}(1.0M)||H^+(a M)|H_2(1 Bar)|Pt \quad E = +0.4V

Given EZn2+Zn0=0.76V,2.303RTF=0.06E_{Zn^{2+}|Zn}^0 = -0.76V, \frac{2.303RT}{F} = 0.06

pH of the given solution is _______ (Rounded off to the nearest integer)

Answer

6

Explanation

Solution

For the hydrogen electrode reaction

2H++2eH2(E0=0V)2H^+ + 2e^- \rightarrow H_2 \quad (E^0 = 0 V),

the Nernst equation gives:

EH=0(0.062)log(1[H+]2)=0.06log[H+]E_H = 0 - (\frac{0.06}{2}) \cdot log(\frac{1}{[H^+]^2}) = 0.06 \cdot log[H^+].

The zinc electrode is maintained at standard conditions (E0=0.76VE^0 = -0.76 V). With the cell set up as

ZnZn2+(1.0M)H+(aM)H2(1Bar)PtZn|Zn^{2+}(1.0 M) || H^+ (a M)|H_2 (1 Bar)|Pt,

the overall cell potential is:

Ecell=EcathodeEanode=(0.06log[H+])(0.76)=0.06log[H+]+0.76E_{cell} = E_{cathode} - E_{anode} = (0.06 \cdot log[H^+]) - (-0.76) = 0.06 \cdot log[H^+] + 0.76.

Given Ecell=+0.4VE_{cell} = +0.4 V, we have:

0.06log[H+]+0.76=0.40.06 \cdot log[H^+] + 0.76 = 0.4

0.06log[H+]=0.40.76=0.360.06 \cdot log[H^+] = 0.4 - 0.76 = -0.36

log[H+]=6log[H^+] = -6

Thus, [H+]=106M[H^+] = 10^{-6} M, and hence

pH=6pH = 6.