Solveeit Logo

Question

Question: In the function \(f\left( x \right) = \dfrac{{\log \left( {1 + ax} \right) - \log \left( {1 - bx} \r...

In the function f(x)=log(1+ax)log(1bx)x,x0f\left( x \right) = \dfrac{{\log \left( {1 + ax} \right) - \log \left( {1 - bx} \right)}}{x},x \ne 0 is continuous at x=0x = 0, then f(0)=f\left( 0 \right) =
A. logalogb\log a - \log b
B. a+ba + b
C. loga+logb\log a + \log b
D. aba - b

Explanation

Solution

Hint: Use property of limits i.e. limx0log(1+x)x=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\log \left( {1 + x} \right)}}{x} = 1

Given function f(x)=log(1+ax)log(1bx)xf\left( x \right) = \dfrac{{\log \left( {1 + ax} \right) - \log \left( {1 - bx} \right)}}{x}
For f(x)f\left( x \right)to be continuous, we must have f(0)=limx0f(x)f\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} f\left( x \right)
Put the value off(x)f\left( x \right), we get
f(0)=limx0log(1+ax)log(1bx)xf\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{\log (1 + ax) - \log (1 - bx)}}{x}
Multiply and divide the equation with aa and b - b, we get
f(0)=limx0alog(1+ax)ax(b)log(1bx)bxf\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{a\log (1 + ax)}}{{ax}} - \dfrac{{\left( { - b} \right)\log (1 - bx)}}{{ - bx}}
We know that, limx0log(1+x)x=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\log \left( {1 + x} \right)}}{x} = 1
f(0)=a.1+b.1 f(0)=a+b  \therefore f\left( 0 \right) = a.1 + b.1 \\\ f\left( 0 \right) = a + b \\\
Hence, the correct option is B.

Note: Graphing a function or exploring a table of values to determine a limit can be cumbersome and time-consuming. When possible, it is more efficient to use the properties of limits, which is a collection of theorems for finding limits.