Solveeit Logo

Question

Question: In the formula \[2\cos \dfrac{A}{2} = \pm \sqrt {1 + \sin A} \pm \sqrt {1 - \sin A} \], find within ...

In the formula 2cosA2=±1+sinA±1sinA2\cos \dfrac{A}{2} = \pm \sqrt {1 + \sin A} \pm \sqrt {1 - \sin A} , find within what limits A2\dfrac{A}{2} must lie when
(1) The two positive signs are taken.
(2) The two negative signs are taken and
(3) The first sign is negative and the second positive.

Explanation

Solution

We need to find out the required range for that first we need to solve the given formula, then apply the signs in different cases and then finally we will get the reduced form.
Comparing the formula 2cos2A1=cos2A2{\cos ^2}A - 1 = \cos 2A we will get the range for each case.

Formula used: (a+b)2=a2+2ab+b2{(a + b)^2} = {a^2} + 2ab + {b^2}
(ab)2=a22ab+b2{(a - b)^2} = {a^2} - 2ab + {b^2}
a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b)
sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
2cos2A1=cos2A2{\cos ^2}A - 1 = \cos 2A

Complete step-by-step answer:
It is given that, the formula 2cosA2=±1+sinA±1sinA2\cos \dfrac{A}{2} = \pm \sqrt {1 + \sin A} \pm \sqrt {1 - \sin A} ,
We need to find out within what limits A2\dfrac{A}{2} must lie when
(1) the two positive signs are taken.
(2) the two negative signs are taken and
(3) the first sign is negative and the second positive.
Given that, 2cosA2=±1+sinA±1sinA2\cos \dfrac{A}{2} = \pm \sqrt {1 + \sin A} \pm \sqrt {1 - \sin A}
If both signs are taken positive, then
2cosA2=1+sinA+1sinA\Rightarrow 2\cos \dfrac{A}{2} = \sqrt {1 + \sin A} + \sqrt {1 - \sin A}
Squaring both sides we have,
4cos2A2=(1+sinA+1sinA)2\Rightarrow 4{\cos ^2}\dfrac{A}{2} = {\left( {\sqrt {1 + \sin A} + \sqrt {1 - \sin A} } \right)^2}
By using the formula (a+b)2=a2+2ab+b2{(a + b)^2} = {a^2} + 2ab + {b^2},
4cos2A2=1+sinA+1sinA+21+sinA.1sinA\Rightarrow 4{\cos ^2}\dfrac{A}{2} = 1 + \sin A + 1 - \sin A + 2\sqrt {1 + \sin A} .\sqrt {1 - \sin A}
Simplifying we get,
4cos2A2=2+2(1+sinA)(1sinA)\Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 + 2\sqrt {\left( {1 + \sin A} \right)\left( {1 - \sin A} \right)}
Let us using the formula a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b),
4cos2A2=2+21sin2A\Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 + 2\sqrt {1 - {{\sin }^2}A}
Since, we know that 1sin2x=cos2x1 - {\sin ^2}x = {\cos ^{2x}} by using this we get,
4cos2A2=2+2cos2A\Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 + 2\sqrt {{{\cos }^2}A}
Cancelling common term 22 on both sides,
2cos2A2=1+cosA\Rightarrow 2{\cos ^2}\dfrac{A}{2} = 1 + \left| {\cos A} \right|
We know that
2cos2A1=cos2A2{\cos ^2}A - 1 = \cos 2A
Thus we get,
2cos2A2=1+cosA2{\cos ^2}\dfrac{A}{2} = 1 + \left| {\cos A} \right|
cosA=2cos2A21\left| {\cos A} \right| = 2{\cos ^2}\dfrac{A}{2} - 1
Then,cosA>0\cos A > 0 Thus cos Acos{\text{ }}A is positive if A lie in the region π2 to π2 - \dfrac{\pi }{2}{\text{ to }}\dfrac{\pi }{2}
Therefore we get, A2\dfrac{A}{2} must lie between π4 to π4 - \dfrac{\pi }{4}{\text{ to }}\dfrac{\pi }{4} $$$$
(2) If both signs are taken negative, then
2cosA2=1+sinA1sinA2\cos \dfrac{A}{2} = - \sqrt {1 + \sin A} - \sqrt {1 - \sin A}
Squaring both sides we have,
4cos2A2=(1+sinA1sinA)2\Rightarrow 4{\cos ^2}\dfrac{A}{2} = {\left( { - \sqrt {1 + \sin A} - \sqrt {1 - \sin A} } \right)^2}
Taking common (1)2{\left( { - 1} \right)^2} out from the root,
4cos2A2=(1)2(1+sinA+1sinA)2\Rightarrow 4{\cos ^2}\dfrac{A}{2} = {( - 1)^2}{\left( {\sqrt {1 + \sin A} + \sqrt {1 - \sin A} } \right)^2}
By using the formula (a+b)2=a2+2ab+b2{(a + b)^2} = {a^2} + 2ab + {b^2},
4cos2A2=1+sinA+1sinA+21+sinA.1sinA\Rightarrow 4{\cos ^2}\dfrac{A}{2} = 1 + \sin A + 1 - \sin A + 2\sqrt {1 + \sin A} .\sqrt {1 - \sin A}
Simplifying we get,
4cos2A2=2+2(1+sinA)(1sinA)\Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 + 2\sqrt {\left( {1 + \sin A} \right)\left( {1 - \sin A} \right)}
Let us using the formula a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b),
4cos2A2=2+21sin2A\Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 + 2\sqrt {1 - {{\sin }^2}A}
Since, we know that 1sin2x=cos2x1 - {\sin ^2}x = {\cos ^{2x}} by using this we get,
4cos2A2=2+2cos2A\Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 + 2\sqrt {{{\cos }^2}A}
Cancelling common term 22 on both sides,
2cos2A2=1+cosA\Rightarrow 2{\cos ^2}\dfrac{A}{2} = 1 + \left| {\cos A} \right|
We know that 2cos2A1=cos2A2{\cos ^2}A - 1 = \cos 2A
Thus we get,
2cos2A2=1+cosA2{\cos ^2}\dfrac{A}{2} = 1 + \left| {\cos A} \right|
cosA=2cos2A21\left| {\cos A} \right| = 2{\cos ^2}\dfrac{A}{2} - 1
Then, cosA>0\cos A > 0 Thus cos Acos{\text{ }}A is positive if A lie in the region π2 to π2 - \dfrac{\pi }{2}{\text{ to }}\dfrac{\pi }{2}
Therefore we get, A2\dfrac{A}{2} must lie between π4 to π4 - \dfrac{\pi }{4}{\text{ to }}\dfrac{\pi }{4}.
(3) The first sign is negative and the second positive.
2cosA2=1+sinA+1sinA2\cos \dfrac{A}{2} = - \sqrt {1 + \sin A} + \sqrt {1 - \sin A}
Squaring both sides we have,
4cos2A2=(1+sinA+1sinA)2\Rightarrow 4{\cos ^2}\dfrac{A}{2} = {\left( { - \sqrt {1 + \sin A} + \sqrt {1 - \sin A} } \right)^2}
By using the formula (ab)2=a22ab+b2{(a - b)^2} = {a^2} - 2ab + {b^2},
4cos2A2=1+sinA+1sinA21+sinA.1sinA\Rightarrow 4{\cos ^2}\dfrac{A}{2} = 1 + \sin A + 1 - \sin A - 2\sqrt {1 + \sin A} .\sqrt {1 - \sin A}
Simplifying we get,
4cos2A2=22(1+sinA)(1sinA)\Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 - 2\sqrt {\left( {1 + \sin A} \right)\left( {1 - \sin A} \right)}
Let us using the formula a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b),
4cos2A2=221sin2A\Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 - 2\sqrt {1 - {{\sin }^2}A}
Since, we know that 1sin2x=cos2x1 - {\sin ^2}x = {\cos ^{2}x} by using this we get,
4cos2A2=22cos2A\Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 - 2\sqrt {{{\cos }^2}A}
Cancelling common term 22 on both sides,
2cos2A2=1cosA\Rightarrow 2{\cos ^2}\dfrac{A}{2} = 1 - \left| {\cos A} \right|
cosA=12cos2A2\Rightarrow \left| {\cos A} \right| = 1 - 2{\cos ^2}\dfrac{A}{2}
We know that 2cos2A1=cos2A2{\cos ^2}A - 1 = \cos 2A
If cosA<0\cos A < 0 then cosA=cosA\left| {\cos A} \right| = - \cos A
Thus,
cosA=12cos2A2\Rightarrow - \cos A = 1 - 2{\cos ^2}\dfrac{A}{2}
cosA=2cos2A21\Rightarrow \cos A = 2{\cos ^2}\dfrac{A}{2} - 1
So, cos Acos{\text{ }}A is negative if A lie in the region π2 to 3π2\dfrac{\pi }{2}{\text{ to }}\dfrac{{3\pi }}{2}
Therefore we get, A2\dfrac{A}{2} must lie between π4 to 3π4\dfrac{\pi }{4}{\text{ to }}\dfrac{{3\pi }}{4}.

Note:

In the first quadrant (0to π2)\left( {0\,{\text{to }}\dfrac{\pi }{2}} \right) all trigonometric functions are positive, in second quadrant (π2toπ)\left( {\dfrac{\pi }{2}\,{\text{to}}\,\pi } \right) only sine function is positive, and in third quadrant (πto 3π2)\left( {\pi \,{\text{to }}\dfrac{{3\pi }}{2}} \right) tan function is positive, in fourth quadrant
(3π2 to 2π)\left( {\dfrac{{3\pi }}{2}{\text{ to }}2\pi } \right) cosine functions are positive.