Solveeit Logo

Question

Physics Question on Atoms

In the following transitions, which one has higher frequency?

A

313\to 1

B

424\to 2

C

434\to 3

D

323\to 2

Answer

313\to 1

Explanation

Solution

From Bohr's postulate, energy of electron in nthn t h orbit is given by E=MZ2e48ε02h2(1n2)E=-\frac{M Z^{2} e^{4}}{8 \varepsilon_{0}^{2} h^{2}}\left(\frac{1}{n^{2}}\right) When electron jumps from some higher energy state n2n_{2} to a lower energy state n1n_{1}, the energy difference between these states is E2E1(1n121n22)E_{2}-E_{1} \propto\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) From Bohr's third postulate, the frequency vv of the electromagnetic wave is v=E2E1h(1n121n22)v=\frac{E_{2}-E_{1}}{h} \propto\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) First case n1=1,n2=3 n_{1}=1, n_{2}=3 v1(119)89\therefore v_{1} \propto\left(1-\frac{1}{9}\right) \propto \frac{8}{9} Second case n1=2,n2=4n_{1}=2, n_{2}=4 v2(14116)316\therefore v_{2} \propto\left(\frac{1}{4}-\frac{1}{16}\right) \propto \frac{3}{16} Third case n1=3,n2=4n_{1}=3, n_{2}=4 v3(19116)7144\therefore v_{3} \propto\left(\frac{1}{9}-\frac{1}{16}\right) \propto \frac{7}{144} Fourth case n1=2,n2=3 n_{1}=2, n_{2}=3 v4(1419)536\therefore v_{4} \propto\left(\frac{1}{4}-\frac{1}{9}\right) \propto \frac{5}{36} v1>v2>v4>v3 v_{1}>v_{2}>v_{4}>v_{3} Hence, transition 313 \rightarrow 1 has higher frequency.