Solveeit Logo

Question

Question: In the following four periods (i) Time of revolution of a satellite just above the earth’s surface ...

In the following four periods

(i) Time of revolution of a satellite just above the earth’s surface (Tst)\left( T _ { s t } \right)

(ii) Period of oscillation of mass inside the tunnel bored along the diameter of the earth (Tma)\left( T _ { m a } \right)

(iii) Period of simple pendulum having a length equal to the earth’s radius in a uniform field of 9.8 N/kg (Tsp)\left( T _ { s p } \right)

(iv) Period of an infinite length simple pendulum in the earth’s real gravitational field (Tis)\left( T _ { i s } \right)

A

Tst>TmaT _ { s t } > T _ { m a }

B

Tma>TstT _ { m a } > T _ { s t }

C

Tsp<TisT _ { s p } < T _ { i s }

D

Tst=Tma=Tsp=TisT _ { s t } = T _ { m a } = T _ { s p } = T _ { i s }

Answer

Tsp<TisT _ { s p } < T _ { i s }

Explanation

Solution

(i) Tst=2π(R+h)3GMT _ { s t } = 2 \pi \sqrt { \frac { ( R + h ) ^ { 3 } } { G M } } =2πRg= 2 \pi \sqrt { \frac { R } { g } }

[As h <<R and GM=gR2]\left. G M = g R ^ { 2 } \right]

(ii) Tma=2πRgT _ { m a } = 2 \pi \sqrt { \frac { R } { g } }

(iii) Tsp=2π1g(1l+1R)=2πR2gT _ { s p } = 2 \pi \sqrt { \frac { 1 } { g \left( \frac { 1 } { l } + \frac { 1 } { R } \right) } } = 2 \pi \sqrt { \frac { R } { 2 g } } [As l = R]

(iv) Tis=2πRgT _ { i s } = 2 \pi \sqrt { \frac { R } { g } }