Solveeit Logo

Question

Mathematics Question on Triangles

In the following figure, QRQS=QTPR\frac{QR}{QS}=\frac{QT}{PR} and 1=2\angle 1 =\angle 2
Show that ΔPQR∼ΔTQR
Show that ΔPQR∼ΔTQR

Answer

Given: QRQS=QTPR\frac{QR}{QS}=\frac{QT}{PR} and 1=2\angle 1 =\angle 2

To Prove: ΔPQR∼ΔTQR

Proof: In ∆PQR,
\anglePQR = \anglePRQ
∴ PQ = PR ………………(i)

Using (i) we obtain
QRQS=QTQP\frac{QR}{QS}=\frac{QT}{QP}.............(ii)

In ΔPQS and ΔTQR,
QRQS=QTQP\frac{QR}{QS}=\frac{QT}{QP} [using (ii)]
\angleQ=\angleQ
∴ ΔPQS∼ΔTQR

Hence Proved