Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

In the following cases, find the distance of each of the given points from the corresponding given plane.
Point Plane
(a) (0,0,0) 3x-4y+12z=3
(b) (3,-2,1) 2x-y+2z+3=0
(c) (2,3,-5) x+2y-2z=9
(d) (-6,0,0) 2x-3y+6z-2=0

Answer

It is known that the distance between a point P(x1,y1,z1)and a plane Ax-+By+Cz=D, is given by,
d=AX1+By1+Cz1DA2+B2+C2\begin{vmatrix}\frac{AX_1+By_1+Cz_1-D}{\sqrt{A^2+B^2+C^2}} \end{vmatrix}|...(1)

(a) The given point is (0,0,0) and the plane is 3x-4y+12z=3

∴d=3040+1203(3)2+(4)2+(12)2\begin{vmatrix}\frac{3*0-4*0+12*0-3}{\sqrt{(3)^2+(-4)^2+(12)^2}} \end{vmatrix}

=3169\frac{3}{\sqrt{169}}=313\frac{3}{13}


(b)The given point is (3,-2,1) and the plane is 2x-y+2z+3=0

∴d=23(2)+21+3(2)2+(1)2+(2)2\begin{vmatrix}\frac{2*3-(-2)+2*1+3}{\sqrt{(2)^2+(-1)^2+(2)^2}} \end{vmatrix}

=|133\frac{13}{3}| =133\frac{13}{3}


(c)The given point is (2,3,-5) and the plane is x+2y-2z=9

∴d=2+232(5)9(1)2+(2)2+(2)2\begin{vmatrix}\frac{2+2*3-2(-5)-9}{\sqrt{(1)^2+(2)^2+(-2)^2}} \end{vmatrix}

=93\frac{9}{3}
=3


(d)The given point is (-6,0,0) and the plane is 2x-3y+6z-2=0

∴d=2(6)30+602(2)2+(3)2+(6)2\begin{vmatrix}\frac{2(-6)-3*0+6*0-2}{\sqrt{(2)^2+(-3)^2+(6)^2}} \end{vmatrix}

=1449\begin{vmatrix}\frac{-14}{\sqrt{49}} \end{vmatrix}

=147\frac{14}{7}
=2