Solveeit Logo

Question

Question: In the figure shown, find out the value of $\theta$ at this instant [assume string to be tight] ...

In the figure shown, find out the value of θ\theta at this instant [assume string to be tight]

A

tan134tan^{-1}\frac{3}{4}

B

tan143tan^{-1}\frac{4}{3}

C

tan138tan^{-1}\frac{3}{8}

D

none of these

Answer

θ=tan134\theta = tan^{-1}\frac{3}{4}

Explanation

Solution

To find the value of θ\theta, we use the principle of constraint motion for an inextensible string. The total length of the string remains constant.

Let LAL_A be the length of the string segment connecting block A to the pulley, and LBL_B be the length of the string segment connecting block B to the pulley. Let xAx_A be the horizontal distance of block A from the vertical line passing through the pulley, and xBx_B be the horizontal distance of block B from the vertical line passing through the pulley. Let hh be the vertical height of the pulley from the ground.

The total length of the string LL can be written as: L=LA+LB+constant (length over pulley)L = L_A + L_B + \text{constant (length over pulley)} L=xA2+h2+xB2+h2+constantL = \sqrt{x_A^2 + h^2} + \sqrt{x_B^2 + h^2} + \text{constant}

Since the string is inextensible, its total length LL is constant, so its time derivative is zero: dLdt=0\frac{dL}{dt} = 0

Differentiating the expression for LL with respect to time tt: 12xA2+h2(2xAdxAdt+2hdhdt)+12xB2+h2(2xBdxBdt+2hdhdt)=0\frac{1}{2\sqrt{x_A^2 + h^2}} \left(2x_A \frac{dx_A}{dt} + 2h \frac{dh}{dt}\right) + \frac{1}{2\sqrt{x_B^2 + h^2}} \left(2x_B \frac{dx_B}{dt} + 2h \frac{dh}{dt}\right) = 0 xALAdxAdt+hLAdhdt+xBLBdxBdt+hLBdhdt=0\frac{x_A}{L_A} \frac{dx_A}{dt} + \frac{h}{L_A} \frac{dh}{dt} + \frac{x_B}{L_B} \frac{dx_B}{dt} + \frac{h}{L_B} \frac{dh}{dt} = 0

From the figure, we can relate the geometric terms to the angles: For the left side (block A): cosθ=xALA\cos\theta = \frac{x_A}{L_A} sinθ=hLA\sin\theta = \frac{h}{L_A}

For the right side (block B): cos30=xBLB\cos 30^\circ = \frac{x_B}{L_B} sin30=hLB\sin 30^\circ = \frac{h}{L_B}

Now, let's relate the rates of change of coordinates to the given velocities: Velocity of block A, vA=3.25m/sv_A = 3.25 \, \text{m/s}, is to the right. Since xAx_A is the horizontal distance from the pulley (assuming A is to the left), moving right means xAx_A is decreasing. So, dxAdt=vA\frac{dx_A}{dt} = -v_A. Velocity of block B, vB=3m/sv_B = \sqrt{3} \, \text{m/s}, is to the right. Since xBx_B is the horizontal distance from the pulley (assuming B is to the right), moving right means xBx_B is increasing. So, dxBdt=vB\frac{dx_B}{dt} = v_B. Velocity of the pulley, vP=1m/sv_P = 1 \, \text{m/s}, is upwards. So, dhdt=vP\frac{dh}{dt} = v_P.

Substitute these into the differentiated length equation: (cosθ)(vA)+(sinθ)(vP)+(cos30)(vB)+(sin30)(vP)=0(\cos\theta)(-v_A) + (\sin\theta)(v_P) + (\cos 30^\circ)(v_B) + (\sin 30^\circ)(v_P) = 0 vAcosθ+vPsinθ+vBcos30+vPsin30=0-v_A \cos\theta + v_P \sin\theta + v_B \cos 30^\circ + v_P \sin 30^\circ = 0

Rearranging the terms: vP(sinθ+sin30)=vAcosθvBcos30v_P (\sin\theta + \sin 30^\circ) = v_A \cos\theta - v_B \cos 30^\circ

Now, substitute the given values: vA=3.25m/s=134m/sv_A = 3.25 \, \text{m/s} = \frac{13}{4} \, \text{m/s} vB=3m/sv_B = \sqrt{3} \, \text{m/s} vP=1m/sv_P = 1 \, \text{m/s} sin30=12\sin 30^\circ = \frac{1}{2} cos30=32\cos 30^\circ = \frac{\sqrt{3}}{2}

1(sinθ+12)=134cosθ3(32)1 \left(\sin\theta + \frac{1}{2}\right) = \frac{13}{4} \cos\theta - \sqrt{3} \left(\frac{\sqrt{3}}{2}\right) sinθ+12=134cosθ32\sin\theta + \frac{1}{2} = \frac{13}{4} \cos\theta - \frac{3}{2} sinθ+0.5=3.25cosθ1.5\sin\theta + 0.5 = 3.25 \cos\theta - 1.5 sinθ+0.5+1.5=3.25cosθ\sin\theta + 0.5 + 1.5 = 3.25 \cos\theta sinθ+2=3.25cosθ\sin\theta + 2 = 3.25 \cos\theta Multiply by 4 to clear the decimal/fraction: 4sinθ+8=13cosθ4\sin\theta + 8 = 13\cos\theta

We need to find θ\theta. We can express this in terms of tanθ\tan\theta. Divide by cosθ\cos\theta (assuming cosθ0\cos\theta \neq 0): 4tanθ+8cosθ=134\tan\theta + \frac{8}{\cos\theta} = 13 This form is not directly solvable for tanθ\tan\theta.

Let's try to rearrange 4sinθ+8=13cosθ4\sin\theta + 8 = 13\cos\theta as 13cosθ4sinθ=813\cos\theta - 4\sin\theta = 8. We know that sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1. From 4sinθ=13cosθ84\sin\theta = 13\cos\theta - 8, square both sides: 16sin2θ=(13cosθ8)216\sin^2\theta = (13\cos\theta - 8)^2 16(1cos2θ)=169cos2θ208cosθ+6416(1 - \cos^2\theta) = 169\cos^2\theta - 208\cos\theta + 64 1616cos2θ=169cos2θ208cosθ+6416 - 16\cos^2\theta = 169\cos^2\theta - 208\cos\theta + 64 185cos2θ208cosθ+48=0185\cos^2\theta - 208\cos\theta + 48 = 0

This is a quadratic equation in cosθ\cos\theta. Let x=cosθx = \cos\theta. 185x2208x+48=0185x^2 - 208x + 48 = 0 Using the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}: x=208±(208)24(185)(48)2(185)x = \frac{208 \pm \sqrt{(-208)^2 - 4(185)(48)}}{2(185)} x=208±4326435520370x = \frac{208 \pm \sqrt{43264 - 35520}}{370} x=208±7744370x = \frac{208 \pm \sqrt{7744}}{370} To find 7744\sqrt{7744}: 802=640080^2 = 6400, 902=810090^2 = 8100. Ends in 4, so unit digit is 2 or 8. Try 882=(902)2=8100360+4=774488^2 = (90-2)^2 = 8100 - 360 + 4 = 7744. So, 7744=88\sqrt{7744} = 88.

x=208±88370x = \frac{208 \pm 88}{370} Two possible values for cosθ\cos\theta: x1=208+88370=296370=148185=4×375×37=45x_1 = \frac{208 + 88}{370} = \frac{296}{370} = \frac{148}{185} = \frac{4 \times 37}{5 \times 37} = \frac{4}{5} x2=20888370=120370=1237x_2 = \frac{208 - 88}{370} = \frac{120}{370} = \frac{12}{37}

If cosθ=45\cos\theta = \frac{4}{5}, then sinθ=1(4/5)2=116/25=9/25=35\sin\theta = \sqrt{1 - (4/5)^2} = \sqrt{1 - 16/25} = \sqrt{9/25} = \frac{3}{5} (since θ\theta is an acute angle in the context of the problem, sinθ>0\sin\theta > 0). Let's check this pair in the equation 4sinθ+8=13cosθ4\sin\theta + 8 = 13\cos\theta: 4(35)+8=13(45)4\left(\frac{3}{5}\right) + 8 = 13\left(\frac{4}{5}\right) 125+8=525\frac{12}{5} + 8 = \frac{52}{5} 12+405=525\frac{12 + 40}{5} = \frac{52}{5} 525=525\frac{52}{5} = \frac{52}{5} This solution is consistent.

For cosθ=45\cos\theta = \frac{4}{5} and sinθ=35\sin\theta = \frac{3}{5}, we have tanθ=sinθcosθ=3/54/5=34\tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{3/5}{4/5} = \frac{3}{4}. So, θ=tan1(34)\theta = \tan^{-1}\left(\frac{3}{4}\right).

Let's check the second solution for cosθ=1237\cos\theta = \frac{12}{37}. If cosθ=1237\cos\theta = \frac{12}{37}, then sinθ=1(12/37)2=372122372=(3712)(37+12)372=25×49372=5×737=3537\sin\theta = \sqrt{1 - (12/37)^2} = \sqrt{\frac{37^2 - 12^2}{37^2}} = \sqrt{\frac{(37-12)(37+12)}{37^2}} = \sqrt{\frac{25 \times 49}{37^2}} = \frac{5 \times 7}{37} = \frac{35}{37}. Check this pair in the equation 4sinθ+8=13cosθ4\sin\theta + 8 = 13\cos\theta: 4(3537)+8=13(1237)4\left(\frac{35}{37}\right) + 8 = 13\left(\frac{12}{37}\right) 14037+8×3737=15637\frac{140}{37} + \frac{8 \times 37}{37} = \frac{156}{37} 140+29637=15637\frac{140 + 296}{37} = \frac{156}{37} 43637=15637\frac{436}{37} = \frac{156}{37} This is false. So, cosθ=1237\cos\theta = \frac{12}{37} is an extraneous solution introduced by squaring.

Therefore, the only valid solution is θ=tan1(34)\theta = \tan^{-1}\left(\frac{3}{4}\right).

Core Solution:

  1. Define the total length of the string L=xA2+h2+xB2+h2L = \sqrt{x_A^2 + h^2} + \sqrt{x_B^2 + h^2}.
  2. Differentiate LL with respect to time and set to zero: dLdt=0\frac{dL}{dt} = 0.
  3. Substitute dxAdt=vA\frac{dx_A}{dt} = -v_A, dxBdt=vB\frac{dx_B}{dt} = v_B, dhdt=vP\frac{dh}{dt} = v_P.
  4. Use trigonometric relations: cosθ=xAxA2+h2\cos\theta = \frac{x_A}{\sqrt{x_A^2 + h^2}}, sinθ=hxA2+h2\sin\theta = \frac{h}{\sqrt{x_A^2 + h^2}}, and similarly for 3030^\circ.
  5. The resulting equation is vAcosθ+vPsinθ+vBcos30+vPsin30=0-v_A \cos\theta + v_P \sin\theta + v_B \cos 30^\circ + v_P \sin 30^\circ = 0.
  6. Substitute given values: vA=3.25v_A = 3.25, vB=3v_B = \sqrt{3}, vP=1v_P = 1, sin30=1/2\sin 30^\circ = 1/2, cos30=3/2\cos 30^\circ = \sqrt{3}/2.
  7. Simplify the equation: 4sinθ+8=13cosθ4\sin\theta + 8 = 13\cos\theta.
  8. Solve for θ\theta by converting to a quadratic in cosθ\cos\theta: 185cos2θ208cosθ+48=0185\cos^2\theta - 208\cos\theta + 48 = 0.
  9. Solve the quadratic equation to get cosθ=45\cos\theta = \frac{4}{5} or cosθ=1237\cos\theta = \frac{12}{37}.
  10. Check both solutions in the original linear equation 4sinθ+8=13cosθ4\sin\theta + 8 = 13\cos\theta. Only cosθ=45\cos\theta = \frac{4}{5} (which implies sinθ=35\sin\theta = \frac{3}{5}) satisfies the equation.
  11. From cosθ=45\cos\theta = \frac{4}{5} and sinθ=35\sin\theta = \frac{3}{5}, tanθ=3/54/5=34\tan\theta = \frac{3/5}{4/5} = \frac{3}{4}.
  12. Therefore, θ=tan1(34)\theta = \tan^{-1}\left(\frac{3}{4}\right).