Solveeit Logo

Question

Question: In the figure, a vector **x** satisfies the equation \(\mathbf{x} - \mathbf{w} = \mathbf{v}\). Then...

In the figure, a vector x satisfies the equation xw=v\mathbf{x} - \mathbf{w} = \mathbf{v}.

Then x =

A

2a+b+c2\mathbf{a} + \mathbf{b} + \mathbf{c}

B

a+2b+c\mathbf{a} + 2\mathbf{b} + \mathbf{c}

C

a+b+2c\mathbf{a} + \mathbf{b} + 2\mathbf{c}

D

a+b+c\mathbf{a} + \mathbf{b} + \mathbf{c}

Answer

a+2b+c\mathbf{a} + 2\mathbf{b} + \mathbf{c}

Explanation

Solution

v=b+c\mathbf{v} = \mathbf{b} + \mathbf{c} …..(i)

w=b+a\mathbf{w} = \mathbf{b} + \mathbf{a} …..(ii)

We have, x=v+w=a+2b+c\mathbf{x} = \mathbf{v} + \mathbf{w} = \mathbf{a} + 2\mathbf{b} + \mathbf{c}.