Solveeit Logo

Question

Question: In the expansion of \({{\left( 1-x \right)}^{5}}\) , coefficient of \({{x}^{5}}\) will be: (A). 1 ...

In the expansion of (1x)5{{\left( 1-x \right)}^{5}} , coefficient of x5{{x}^{5}} will be:
(A). 1
(B). -1
(C). 5
(D). -5

Explanation

Solution

Hint: Apply the binomial expansion of (ab)5{{\left( a-b \right)}^{5}} that you get by using the general expansion of (ab)n{{\left( a-b \right)}^{n}}. Finally, replace ‘a‘ by 1 and ‘b’ by x to get the expansion of (1x)5{{\left( 1-x \right)}^{5}} .

Complete step-by-step solution -
We know that the binomial expansion of (ab)n{{\left( a-b \right)}^{n}} , can be written as:
(ab)n= nC0anb0nC1an1b1+nC2an2b2.........+nCna0(b)n{{\left( a-b \right)}^{n}}={{\text{ }}^{n}}{{\text{C}}_{0}}{{a}^{n}}{{b}^{0}}{{-}^{n}}{{\text{C}}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{\text{C}}_{2}}{{a}^{n-2}}{{b}^{2}}-.........{{+}^{n}}{{\text{C}}_{n}}{{a}^{0}}{{\left( -b \right)}^{n}}
Therefore, if we take n to be 5, the binomial expansion of (ab)5{{\left( a-b \right)}^{5}} is:
(ab)5= 5C0a5b05C1a4b1+5C2a3b25C3a2b3+5C4a1b45C5a0b5{{\left( a-b \right)}^{5}}={{\text{ }}^{5}}{{\text{C}}_{0}}{{a}^{5}}{{b}^{0}}{{-}^{5}}{{\text{C}}_{1}}{{a}^{4}}{{b}^{1}}{{+}^{5}}{{\text{C}}_{2}}{{a}^{3}}{{b}^{2}}{{-}^{5}}{{\text{C}}_{3}}{{a}^{2}}{{b}^{3}}{{+}^{5}}{{C}_{4}}{{a}^{1}}{{b}^{4}}{{-}^{5}}{{\text{C}}_{5}}{{a}^{0}}{{b}^{5}}
Now, if we replace ‘a’ by 1 and ‘b’ by x, in the above expansion, we will end up getting the expansion of (1x)5{{\left( 1-x \right)}^{5}} .
(1x)5= 5C0x05C1x1+5C2x25C3x3+5C4x45C5x5\therefore {{\left( 1-x \right)}^{5}}={{\text{ }}^{5}}{{\text{C}}_{0}}{{x}^{0}}{{-}^{5}}{{\text{C}}_{1}}{{x}^{1}}{{+}^{5}}{{\text{C}}_{2}}{{x}^{2}}{{-}^{5}}{{\text{C}}_{3}}{{x}^{3}}{{+}^{5}}{{C}_{4}}{{x}^{4}}{{-}^{5}}{{\text{C}}_{5}}{{x}^{5}}
Therefore, the coefficient of x5{{x}^{5}} , in the expansion of (1x)5{{\left( 1-x \right)}^{5}} is negative of 5C5^{5}{{C}_{5}} , which is equal to -1.
Hence, the answer to the above question is -1, which is option (b).

Note: Always be careful with the signs that appear in the expansions, as the students are generally finding signs to be a concern while using the binomial expansions. Also, be careful about the calculation part, as in general cases, the questions involving binomial expansion contain very long and complex calculations due to the presence of factorial terms. You should also know that the binomial coefficient and actual coefficients might or might not be the same. For example: in the expansion of (1+3x)3{{\left( 1+3x \right)}^{3}} , the binomial coefficient of x3{{x}^{3}} is 3C3=1^{3}{{C}_{3}}=1 and coefficient is 27.