Solveeit Logo

Question

Question: In the expansion of \[{{\left( 1+a \right)}^{m+n}}\] prove that coefficients of \[{{a}^{m}}\] and \[...

In the expansion of (1+a)m+n{{\left( 1+a \right)}^{m+n}} prove that coefficients of am{{a}^{m}} and an{{a}^{n}} are equal.

Explanation

Solution

(1+a)m+n{{\left( 1+a \right)}^{m+n}} is similar to the binomial expansion of (a+b)n{{\left( a+b \right)}^{n}}. Find the expansion and substitute ar=am{{a}^{r}}={{a}^{m}} and ar=an{{a}^{r}}={{a}^{n}}. The simplification will state that the coefficient of both am{{a}^{m}}and an{{a}^{n}} is same.

Complete step-by-step Solution:

Given an expression (1+a)m+n{{\left( 1+a \right)}^{m+n}}. We need to prove that the expansion of (1+a)m+n{{\left( 1+a \right)}^{m+n}}will result in the coefficients am{{a}^{m}}and an{{a}^{n}} being equal.
We know the general term of expansion of (a+b)n{{\left( a+b \right)}^{n}}, which is a binomial expansion.
It is possible to expand the polynomial (a+b)n{{\left( a+b \right)}^{n}}into a sum involving term of form xabzxa{{b}^{z}}, where exponents y and z are non-negative integers and n=y+zn=y+z, and co-efficient x of each-term is a specific positive integer.
(a+b)n{{\left( a+b \right)}^{n}} is expanded as, Tr+1=nCranrbr{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}.
i.e. if a and b are real numbers and n is a positive integer then,
(a+b)n=nC0an+nC1an1b1+nC2an2b2+......+nCranrbr+......+nCnbn{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+......+{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+......+{}^{n}{{C}_{n}}{{b}^{n}}
where, nCr=n!r!(nr)!{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}for 0rn0\le r\le n.
Therefore, general term or (r+1)th{{\left( r+1 \right)}^{th}}term in the expansion given by,
Tr+1=nCranrbr{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}
Now, for (1+a)m+n=(a+b)n{{\left( 1+a \right)}^{m+n}}={{\left( a+b \right)}^{n}}.
Let’s put n=m+nn=m+n, a = 1 and b = a.

& {{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}} \\\ & {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{1}^{\left( n+m-r \right)}}{{\left( a \right)}^{r}} \\\ & {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}}\times {{1}^{\left( n+m-r \right)}}={}^{n+m}{{C}_{r}}{{a}^{r}}\times 1 \\\ \end{aligned}$$ We know $${{1}^{\left( n+m-r \right)}}$$is equal to 1 i.e. 1 raised to any integer is 1. $${{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}}-(1)$$ Now here we need to find the coefficients of $${{a}^{m}}$$and $${{a}^{n}}$$and prove that their coefficients are the same. Finding coefficient of $${{a}^{m}}$$, let us put $${{a}^{r}}={{a}^{m}}$$. $$\therefore r=m$$ Let us put r = m in equation (1). $${{T}_{m+1}}={}^{n+m}{{C}_{m}}{{a}^{m}}$$ $${}^{n+m}{{C}_{m}}$$is of the form $${}^{n}{{C}_{r}}$$where $$\dfrac{n!}{r!\left( n-r \right)!}$$. $$\begin{aligned} & {{T}_{m+1}}=\dfrac{\left( n+m \right)!}{\left( n+m-m \right)!m!}{{a}^{m}} \\\ & {{T}_{m+1}}=\dfrac{\left( n+m \right)!}{n!m!}{{a}^{m}} \\\ \end{aligned}$$ Hence the coefficient of $${{a}^{m}}$$is $$\dfrac{\left( n+m \right)!}{n!m!}$$. Now let us find the coefficient of $${{a}^{n}}$$. Put, $${{a}^{r}}={{a}^{n}}\Rightarrow r=n$$. Put r=n in equation (1). $$\begin{aligned} & {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}} \\\ & {{T}_{n+1}}={}^{n+m}{{C}_{n}}{{a}^{n}} \\\ & {{T}_{n+1}}=\dfrac{\left( n+m \right)!}{\left( n+m-n \right)n!}\times {{a}^{n}} \\\ & {{T}_{n+1}}=\dfrac{\left( n+m \right)!}{m!n!}{{a}^{n}} \\\ \end{aligned}$$ Hence, the coefficient of $${{a}^{n}}$$is $$\dfrac{\left( n+m \right)!}{m!n!}$$. $$\therefore $$Coefficient of $${{a}^{m}}$$= coefficient of $${{a}^{n}}=\dfrac{\left( n+m \right)!}{m!n!}$$. Hence proved. **Note:** You can consider the expansion of $${{\left( a+b \right)}^{n}}$$if you know it by heart. But it is also easy to derive. Remember to put $${{a}^{r}}={{a}^{m}}$$and $${{a}^{r}}={{a}^{n}}$$. Then only we can prove the coefficients are the same. Also remember the expansion of $${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$$.