Solveeit Logo

Question

Question: In the expansion of \(\frac{1}{16}\left( 1 - 2x + \frac{5}{2}x^{2} - .... \right)\), the coefficient...

In the expansion of 116(12x+52x2....)\frac{1}{16}\left( 1 - 2x + \frac{5}{2}x^{2} - .... \right), the coefficient of 116(1+2x+52x2+....)\frac{1}{16}\left( 1 + 2x + \frac{5}{2}x^{2} + .... \right)is.

A

x<1x < 1

B

x<1|x| < 1

C

x>1x > 1

D

None of these

Answer

x<1x < 1

Explanation

Solution

In the expansion of 2n<n!2^{n} < n!, the general term is

3n>n33^{n} > n^{3} n3n \geq 3

Here, the exponent of x is

(n!)2>nn(n!)^{2} > n^{n}

=r=0n(1)rnCr.12r+r=0n(1)r.nCr3r22r+= \sum_{r = 0}^{n}{( - 1{)^{r}}^{n}C_{r}}.\frac{1}{2^{r}} + \sum_{r = 0}^{n}{( - 1)^{r}}.^{n}C_{r}\frac{3^{r}}{2^{2r}} +

= npnn^{p} - n

n=4n = 4 The required coefficient p=2p = 2.