Solveeit Logo

Question

Question: In the expansion of \(\dfrac{{{e^{7x}} + {e^{3x}}}}{{{e^{5x}}}}\) , the constant term is A) \(0\)...

In the expansion of e7x+e3xe5x\dfrac{{{e^{7x}} + {e^{3x}}}}{{{e^{5x}}}} , the constant term is
A) 00
B) 11
C) 22
D) None of these

Explanation

Solution

The exponential function f(x)=exf(x) = {e^x} is the unique function which is equal to its own derivative , with the initial value f(0)=e0=1f(0) = {e^0} = 1 . Let a,b,ca,b,c are real numbers and the function , eax+ebxecx\dfrac{{{e^{ax}} + {e^{bx}}}}{{{e^{cx}}}} is expressed as e(ac)x+e(bc)x{e^{(a - c)x}} + {e^{(b - c)x}} , then use the expansion of ex{e^x} and find the required answer . The expansion of f(x)=exf(x) = {e^x} is an infinite polynomial or power series.

Complete step by step answer:
From the given data we get e7x+e3xe5x\dfrac{{{e^{7x}} + {e^{3x}}}}{{{e^{5x}}}}
Separate the denominator and we get
=e7xe5x+e3xe5x= \dfrac{{{e^{7x}}}}{{{e^{5x}}}} + \dfrac{{{e^{3x}}}}{{{e^{5x}}}}
We know that 1ex=ex\dfrac{1}{{{e^x}}} = {e^{ - x}} , we use this in the above equation and we get
=e7x×e5x+e3x×e5x= {e^{7x}} \times {e^{ - 5x}} + {e^{3x}} \times {e^{ - 5x}}
=e(7x5x)+e(3x5x)= {e^{(7x - 5x)}} + {e^{(3x - 5x)}}
Calculate and we get
=e2x+e2x= {e^{2x}} + {e^{ - 2x}}
Now we expand the above exponential function and we get
=1+2x1!+4x22!+......+12x1!+4x22!+......= 1 + \dfrac{{2x}}{{1!}} + \dfrac{{4{x^2}}}{{2!}} + ...... + 1 - \dfrac{{2x}}{{1!}} + \dfrac{{4{x^2}}}{{2!}} + ......
Now arrange and we get
=2+2(4x22!+16x44!+......)= 2 + 2\left( {\dfrac{{4{x^2}}}{{2!}} + \dfrac{{16{x^4}}}{{4!}} + ......} \right)
Now the above equation , we will see that 22 is the constant term .
Therefore option (C) is correct.

Note:
We know the rule of sum of power of a function . If there are two exponential functions e3a{e^{3a}} and e3b{e^{3b}} then if we multiply them we add the power of the exponential function . i.e., e3a×e3b=e(3a+3b){e^{3a}} \times {e^{3b}} = {e^{(3a + 3b)}} . If we have two exponential function like eax{e^{ax}} and ebx{e^{ - bx}} then we get when we multiply them eax×ebx=e(axbx){e^{ax}} \times {e^{ - bx}} = {e^{(ax - bx)}} . We have to know about the expansion of the exponential function of ex{e^x} is 1+x1!+x22!+x33!+x44!+......1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + ......