Solveeit Logo

Question

Mathematics Question on Binomial theorem

In the expansion of (214+314)n(2^\frac{1}{4}+3^{-\frac{1}{4}})^n, the ratio of 5th5^{th} term from start and 5th5^{th} term form end is 6:1\sqrt 6 : 1 , then find 3rd3^{rd} term

A

303\sqrt 3

B

603\sqrt 3

C

30

D

503\sqrt 3

Answer

603\sqrt 3

Explanation

Solution

nC4(214)n4(314)4nC4(214)n4(314)4\frac{^nC_4 (2^\frac{1}{4})^{n-4}(3^{\frac{-1}{4}})^4}{^nC_4 (2^\frac{-1}{4})^{n-4}(3^{\frac{1}{4}})^4} = 6\sqrt 6
(214314)(n8)(\frac{2^\frac{1}{4}}{3^\frac{-1}{4}})^{(n-8)} = 6\sqrt 6
(6)n84(6)^\frac{n-8}{4} = 6\sqrt 6
n8=2n-8=2
n=10n=10
T3=10C2(214)8(314)2T_3 = {^{10}}C_2(2^{\frac{1}{4}})^8 (3^\frac{-1}{4})^2
=10C2×(2)4×13=603= {^{10}}C_2\times(\sqrt2)^4\times\frac{1}{\sqrt3} = 60\sqrt3

So, the correct answer is (B): 60360\sqrt 3