Solveeit Logo

Question

Mathematics Question on Binomial theorem

In the expansion of (1+x+x2+x3)6,{{(1+x+{{x}^{2}}+{{x}^{3}})}^{6}}, the coefficient of x14{{x}^{14}} is

A

130

B

120

C

128

D

125

Answer

120

Explanation

Solution

(1+x+x2+x3)6{{(1+x+{{x}^{2}}+{{x}^{3}})}^{6}}
=(1+x)6(1+x2)6={{(1+x)}^{6}}{{(1+{{x}^{2}})}^{6}}
=(6C0+6C1x+6C2x2+6C3x3+6C4x4={{(}^{6}}{{C}_{0}}{{+}^{6}}{{C}_{1}}x{{+}^{6}}{{C}_{2}}{{x}^{2}}{{+}^{6}}{{C}_{3}}{{x}^{3}}{{+}^{6}}{{C}_{4}}{{x}^{4}} +6C5x5+6C6x6){{+}^{6}}{{C}_{5}}{{x}^{5}}{{+}^{6}}{{C}_{6}}{{x}^{6}}) ×(6C0+6C1x2+6C2x4+6C3x6+6C4x8\times {{(}^{6}}{{C}_{0}}{{+}^{6}}{{C}_{1}}{{x}^{2}}{{+}^{6}}{{C}_{2}}{{x}^{4}}{{+}^{6}}{{C}_{3}}{{x}^{6}}{{+}^{6}}{{C}_{4}}{{x}^{8}} +6C5x10+6C6x12){{+}^{6}}{{C}_{5}}{{x}^{10}}{{+}^{6}}{{C}_{6}}{{x}^{12}})
\therefore Coefficient of x14{{x}^{14}} in (1+x+x2+x3)6{{(1+x+{{x}^{2}}+{{x}^{3}})}^{6}} =6C2.6C6+6C4.6C5+6C6.6C4{{=}^{6}}{{C}_{2}}{{.}^{6}}{{C}_{6}}{{+}^{6}}{{C}_{4}}{{.}^{6}}{{C}_{5}}{{+}^{6}}{{C}_{6}}{{.}^{6}}{{C}_{4}}
=6!2!4!.6!0!6!+6!4!2!.6!5!1!+6!0!6!.6!2!4!=\frac{6!}{2!4!}.\frac{6!}{0!6!}+\frac{6!}{4!2!}.\frac{6!}{5!1!}+\frac{6!}{0!6!}.\frac{6!}{2!4!}
=15+90+15=120=15+90+15=120