Solveeit Logo

Question

Mathematics Question on Binomial theorem

In the expansion of (1+x)(1x2)(1+3x+3x2+1x3)5,x0,(1 + x)(1 - x^2) \left( 1 + \frac{3}{x} + \frac{3}{x^2} + \frac{1}{x^3} \right)^5, \quad x \neq 0,the sum of the coefficients of x3x^3 and x13x^{-13} is equal to ____

Answer

Rewriting the given expression:

(1+x)(1x2)(1+3x+3x2+1x3)5,x0,(1 + x)(1 - x^2) \left( 1 + \frac{3}{x} + \frac{3}{x^2} + \frac{1}{x^3} \right)^5, \quad x \neq 0,

Expanding:

(1+x)2(1x)17(1 + x)^2(1 - x)^{17}

To find the coefficient of x2x^2 in the expansion:

Coeff of x2x^2 = combination and calculation shown = 1717

Similarly, for x13x^{-13}:

(1+x)(1x2)(1+3x+3x2+1x3)5 (1 + x)(1 - x^2) \left( 1 + \frac{3}{x} + \frac{3}{x^2} + \frac{1}{x^3} \right)^5

=(1+x)(1x2)((1+x)3x3)5= (1 + x)(1 - x^2) \left( \frac{(1 + x)^3}{x^3} \right)^5

=(1+x)2(1x2)(1+x)15x15= (1 + x)^2(1 - x^2) \frac{(1 + x)^{15}}{x^{15}}

=(1+x)17x(1+x)17x15= \frac{(1 + x)^{17} - x(1 + x)^{17}}{x^{15}}

=coeff(x3) in the expansion of (1+x)17x(1+x)17=01=1= \text{coeff}\left( x^3 \right) \text{ in the expansion of } (1 + x)^{17} - x(1 + x)^{17} = 0 - 1 = -1

Coeff x13x^{-13} = Coeff x2x^2 in (1+x)17x(1+x)17(1 + x)^{17} - x(1 + x)^{17}

=(172)(171)=17×817=119= \binom{17}{2} - \binom{17}{1}= 17 \times 8 - 17 = 119

Hence Answer:

1191=118.119 - 1 = 118.