Solveeit Logo

Question

Question: In the esterification \[{C_2}{H_5}OH\left( l \right) + C{H_3}COOH\left( l \right) \rightleftharpoons...

In the esterification C2H5OH(l)+CH3COOH(l)CH3COOC2H5(l)+H2O(l)  {C_2}{H_5}OH\left( l \right) + C{H_3}COOH\left( l \right) \rightleftharpoons C{H_3}COO{C_2}{H_5}\left( l \right) + {H_{2}}O\left( l \right)\; an equimolar mixture of alcohol and acid taken initially yields under equilibrium, the water with mole fraction = 0.333 = {\text{ }}0.333 Calculate the equilibrium constant:
A) K=2K = 2
B) K=4K = 4
C) K=8K = 8
D) None of these.

Explanation

Solution

In a chemical reaction, when both the reactants and the products are in a concentration which does not change with time any more, it is said to be in a state of chemical equilibrium. Here to calculate the equilibrium constant (Kc)\left( {{K_c}} \right) using the equation of equilibrium concentration.

Complete answer:
When the chemical is in equilibrium, the ratio of the products to the reactants is called equilibrium constant. For a general reaction, aA  +  bB  cC  +  dDaA\; + \;bB\; \rightleftarrows cC\; + \;dD
If, The reaction is in equilibrium (Kc)\left( {{K_c}} \right) = equilibrium constant
(Kc)\left( {{K_c}} \right) =  [A]a[B]b  [C]c[D]d{\text{ }}\dfrac{{{{\left[ A \right]}^a}{{\left[ B \right]}^b}}}{{\;{{\left[ C \right]}^c}{{\left[ D \right]}^d}}}
We will begin this problem by calculating the changes in concentration as the system goes to equilibrium. Then we determine the equilibrium concentrations and, finally, the equilibrium constant.
Let initially, 1 mole1{\text{ }}mole of ethanol and 1 mole1{\text{ }}mole of acetic acid be present.
Let x molesx{\text{ }}moles of ethanol react with x molesx{\text{ }}moles of acetic acid to reach equilibrium.
Now, In the esterification process
C2H5OH(l)+CH3COOH(l)CH3COOC2H5(l)+H2O(l)  {C_2}{H_5}OH\left( l \right) + C{H_3}COOH\left( l \right) \rightleftharpoons C{H_3}COO{C_2}{H_5}\left( l \right) + {H_{2}}O\left( l \right)\;

| C2H5OH{C_2}{H_5}OH | CH3COOH| CH3COOC2H5| H2O
---|---|---|---|---
Initial Moles| 11 | 11| 00 | 0
Moles at equilibrium| (1x)(1 - x) | (1x)(1 - x)| xx | xx

The total number of moles at equilibrium = (1x+  1x + x + x ) = 2\left( {1 - x + \;1 - x{\text{ }} + {\text{ }}x{\text{ }} + {\text{ }}x{\text{ }}} \right){\text{ }} = {\text{ }}2
Given, the mole fraction of water is = 0.333 = {\text{ }}0.333
The mole fraction of water at equilibrium is = x2{\text{ }}\dfrac{x}{2}
So mole fraction of water, x2=0.333\dfrac{x}{2} = 0.333
x=2 ×0.333=0.666\Rightarrow x = 2{\text{ }} \times 0.333 = 0.666
Hence, x  =0.666  x\; = 0.666\; and (1x)=0.334\left( {1 - x} \right) = 0.334
The equilibrium constant expression is
Kc  =  [CH3COOC2H5] [H2O][C2H5OH] [CH3COOH]  \Rightarrow Kc\; = \;\dfrac{{\left[ {C{H_3}COO{C_2}{H_5}} \right]{\text{ }}\left[ {{H_2}O} \right]}}{{\left[ {{C_2}{H_5}OH} \right]{\text{ }}\left[ {C{H_3}COOH} \right]}}\;= [0.666] [0.666][0.334] [0.334]  \dfrac{{\left[ {0.666} \right]{\text{ }}\left[ {0.666} \right]}}{{\left[ {0.334} \right]{\text{ }}\left[ {0.334} \right]}}\; = 44

**So the correct option is option B. K=4K = 4

Note:**
It is reaction specific and at a constant temperature, it is fixed. A catalyst changes the rate of forward and backward reactions equally not to affect the value of the equilibrium constant. Factors that affect equilibrium constant are: Change in concentration of any product or reactant, Change in temperature of the system.