Solveeit Logo

Question

Question: In the equation \(y=a \sin (\omega \mathrm{t}+\mathrm{kx}\), the dimensional formula of \(\omega\) i...

In the equation y=asin(ωt+kxy=a \sin (\omega \mathrm{t}+\mathrm{kx}, the dimensional formula of ω\omega is

A

[M0 L0 T1]\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]

B

[M0LT1]\left[\mathrm{M}^{0} \mathrm{LT}^{-1}\right]

C

[ML0 T0]\left[\mathrm{ML}^{0} \mathrm{~T}^{0}\right]

D

[M0L1T0]\left[M^{0} L^{-1} T^{0}\right]

Answer

[M0 L0 T1]\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]

Explanation

Solution

The argument of a trigonometric function must be dimensionless. Therefore, the dimensions of ω\omega must be such that when multiplied by time (which has dimension [T][T]), the result is dimensionless. Thus, the dimensional formula for ω\omega is [M0L0T1][M^0L^0T^{-1}].