Solveeit Logo

Question

Question: In the equation \((\sqrt{3} - \sqrt{2})Ax^{2} + \frac{Bx}{\sqrt{2} + \sqrt{3}}\)+ C = 0 where A = (4...

In the equation (32)Ax2+Bx2+3(\sqrt{3} - \sqrt{2})Ax^{2} + \frac{Bx}{\sqrt{2} + \sqrt{3}}+ C = 0 where A = (49 + 20620\sqrt{6})1/4, B is the sum of the infinite G.P. 83+82+1638\sqrt{3} + 8\sqrt{2} + \frac{16}{\sqrt{3}}+ ...... and the difference of the roots is (66)log(102log5+loglog18+log472(6\sqrt{6})^{\log(10 - 2\log\sqrt{5} + \log\sqrt{\log 18 + \log 472}} where the base of the logrithem is 6. Then C = 2n where n =

A

5

B

6

C

7

D

8

Answer

7

Explanation

Solution

A = 2+3\sqrt{2} + \sqrt{3}, B = 2432\frac{24}{\sqrt{3} - \sqrt{2}}

x2 + 24x + c = 0

a – b = 8, a + b = – 24 ® ab = 27