Solveeit Logo

Question

Question: In the equation \({{4}^{x+2}}={{2}^{x+3}}+48\), find the value of \(x\) ....

In the equation 4x+2=2x+3+48{{4}^{x+2}}={{2}^{x+3}}+48, find the value of xx .

Explanation

Solution

To find the value of xx in the equation 4x+2=2x+3+48{{4}^{x+2}}={{2}^{x+3}}+48 , we have to write the equation as (22)x+2=2x+3+48{{\left( {{2}^{2}} \right)}^{x+2}}={{2}^{x+3}}+48 . Using rules of exponents, we will get 22x+4=2x+3+48{{2}^{2x+4}}={{2}^{x+3}}+48 . Using am×an=am+n{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}} , (am)n=amn{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}} and simplifying, we will get 2(2x)2(2x)=62{{\left( {{2}^{x}} \right)}^{2}}-\left( {{2}^{x}} \right)=6 . Let us consider y=2xy={{2}^{x}} . Hence, we will get a polynomial, 2x2x6=02{{x}^{2}}-x-6=0. Find the roots of this polynomial and so we get y=2,32y=2,\dfrac{-3}{2} . Substitute the value of y in this and consider 2x=21{{2}^{x}}={{2}^{1}} . From this, the value of x can be easily found.

Complete step-by-step solution:
We have to find the value of xx in the equation 4x+2=2x+3+48{{4}^{x+2}}={{2}^{x+3}}+48 . We will use the rules of exponents here.
We know that 4 can be written as 22{{2}^{2}} . Hence, the given equation becomes
(22)x+2=2x+3+48{{\left( {{2}^{2}} \right)}^{x+2}}={{2}^{x+3}}+48
We know that (am)n=amn{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}} .So, the above equation can be written as
22(x+2)=2x+3+48{{2}^{2\left( x+2 \right)}}={{2}^{x+3}}+48
Let us multiply the exponents in the first term. We will get
22x+4=2x+3+48{{2}^{2x+4}}={{2}^{x+3}}+48
We know that am×an=am+n{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}} . Let’s apply this in LHS and RHS. We will get
24×22x=(23×2x)+48{{2}^{4}}\times {{2}^{2x}}=\left( {{2}^{3}}\times {{2}^{x}} \right)+48
We know that 24=2×2×2×2=16{{2}^{4}}=2\times 2\times 2\times 2=16 and 23=2×2×2=8{{2}^{3}}=2\times 2\times 2=8 . Hence, the above equation becomes
16×22x=(8×2x)+4816\times {{2}^{2x}}=\left( 8\times {{2}^{x}} \right)+48
Let us rearrange the terms. We will get
(16×22x)(8×2x)=48\left( 16\times {{2}^{2x}} \right)-\left( 8\times {{2}^{x}} \right)=48
We know that (am)n=amn{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}} . Hence, we can write the previous equation as
16(2x)28(2x)=4816{{\left( {{2}^{x}} \right)}^{2}}-8\left( {{2}^{x}} \right)=48
Let us take 8 common from LHS. We will get
8[2(2x)2(2x)]=488\left[ 2{{\left( {{2}^{x}} \right)}^{2}}-\left( {{2}^{x}} \right) \right]=48
Now, we can take 8 to the RHS.

& \Rightarrow 2{{\left( {{2}^{x}} \right)}^{2}}-\left( {{2}^{x}} \right)=\dfrac{48}{8} \\\ & \Rightarrow 2{{\left( {{2}^{x}} \right)}^{2}}-\left( {{2}^{x}} \right)=6 \\\ \end{aligned}$$ Let’s take 6 to RHS. $$\Rightarrow 2{{\left( {{2}^{x}} \right)}^{2}}-\left( {{2}^{x}} \right)-6=0$$ Let us consider $y={{2}^{x}}$ . Hence, we will get a polynomial, $2{{x}^{2}}-x-6=0$ Let’s solve this equation. We know that $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ for a polynomial $a{{x}^{2}}+bx+c=0$ . Hence, $y=\dfrac{-\left( -1 \right)\pm \sqrt{{{\left( -1 \right)}^{2}}-\left( 4\times 2\times -6 \right)}}{2\times 2}$ Let’s solve this. We will get $\begin{aligned} & y=\dfrac{1\pm \sqrt{1+48}}{4} \\\ & \Rightarrow y=\dfrac{1\pm \sqrt{49}}{4} \\\ \end{aligned}$ By taking the root, we will get $y=\dfrac{1\pm 7}{4}$ This means that $\begin{aligned} & y=\dfrac{1+7}{4},\dfrac{1-7}{4} \\\ & \Rightarrow y=\dfrac{8}{4},\dfrac{-6}{4} \\\ & \Rightarrow y=2,\dfrac{-3}{2} \\\ \end{aligned}$ Now we can substitute the value of y. We will get ${{2}^{x}}=2,\dfrac{-3}{2}$ Let us consider ${{2}^{x}}=2$ We can write this as $${{2}^{x}}={{2}^{1}}$$ We know that when bases are equal, their powers will also be equal. Hence, $$x=1$$ **Hence, the value of $x$ is 1.** **Note:** You must know the rules of exponents to solve this problem. You may write the formula for ${{\left( {{a}^{m}} \right)}^{n}}\text{as }{{a}^{m+n}}$ , ${{a}^{m}}\times {{a}^{n}}\text{ as }{{a}^{m-n}}$ thus making error in the solution. From the step $$16{{\left( {{2}^{x}} \right)}^{2}}-8\left( {{2}^{x}} \right)=48$$ , we can solve this problem in an alternate way. $$\Rightarrow 16{{\left( {{2}^{x}} \right)}^{2}}-8\left( {{2}^{x}} \right)-48=0$$ We can write $$-8\left( {{2}^{x}} \right)$$ as $-32\left( {{2}^{x}} \right)+24\left( {{2}^{x}} \right)$ . We will get $$\Rightarrow 16{{\left( {{2}^{x}} \right)}^{2}}-32\left( {{2}^{x}} \right)+24\left( {{2}^{x}} \right)-48=0$$ Let us take the common terms outside. We will get $$16\left( {{2}^{x}} \right)\left( {{2}^{x}}-2 \right)+24\left( {{2}^{x}}-2 \right)=0$$ Now, we can take ${{2}^{x}}-2$ outside. We will get $$\left( {{2}^{x}}-2 \right)\left( 16\left( {{2}^{x}} \right)+24 \right)=0$$ This mean that, either $$\left( {{2}^{x}}-2 \right)=0\text{ or }\left( 16\left( {{2}^{x}} \right)+24 \right)=0$$ Let us consider $$\left( {{2}^{x}}-2 \right)=0$$ We can rearrange the terms to get $${{2}^{x}}=2$$ We know that when bases are equal, their powers will also be equal. Hence, $$x=1$$