Solveeit Logo

Question

Physics Question on Motion in a plane

In the cube of side a'a' shown in the figure, the vector from the central point of the face ABODABOD to the central point of the face BEFOBEFO will be:

A

12a(i^k^)\frac{1}{2} a \left(\hat{i} -\hat{k}\right)

B

12a(j^i^)\frac{1}{2} a \left(\hat{j} -\hat{i}\right)

C

12a(k^i^)\frac{1}{2} a \left(\hat{k} -\hat{i}\right)

D

12a(j^k^)\frac{1}{2} a \left(\hat{j} -\hat{k}\right)

Answer

12a(j^i^)\frac{1}{2} a \left(\hat{j} -\hat{i}\right)

Explanation

Solution

rg=a2i^+a2k^\vec{r}_{g} = \frac{a}{2} \hat{i} + \frac{a}{2} \hat{k}
rH=a2j^+a2k^\vec{r}_{H} =\frac{a}{2} \hat{j} + \frac{a}{2} \hat{k}
rHrg=a2(j^i^)\vec{ r}_{H} - \vec{r}_{g} = \frac{a}{2} \left(\hat{j} - \hat{i}\right)