Solveeit Logo

Question

Question: In the circuit shown, the potential difference between A and B is:...

In the circuit shown, the potential difference between A and B is:

A

92V

B

46V

C

30V

D

0V

Answer

92V

Explanation

Solution

The parallel combination of resistors and voltage sources between nodes D and C can be simplified using Millman's theorem. The equivalent resistance is Req=111Ω+11Ω+11Ω=13ΩR_{eq} = \frac{1}{\frac{1}{1\Omega} + \frac{1}{1\Omega} + \frac{1}{1\Omega}} = \frac{1}{3}\Omega. The equivalent voltage source is Eeq=1V1Ω+2V1Ω+3V1Ω11Ω+11Ω+11Ω=6V3=2VE_{eq} = \frac{\frac{1V}{1\Omega} + \frac{2V}{1\Omega} + \frac{3V}{1\Omega}}{\frac{1}{1\Omega} + \frac{1}{1\Omega} + \frac{1}{1\Omega}} = \frac{6V}{3} = 2V, directed from D to C.

The circuit then becomes a series combination of a 5Ω5\Omega resistor, the equivalent 2V2V source and 13Ω\frac{1}{3}\Omega resistor (both from D to C), and a 10Ω10\Omega resistor. The total resistance is Rtotal=5Ω+13Ω+10Ω=463ΩR_{total} = 5\Omega + \frac{1}{3}\Omega + 10\Omega = \frac{46}{3}\Omega.

Let II be the current flowing from A to B. The potential difference VAVBV_A - V_B can be expressed as the sum of voltage drops and rises in the loop: VAVB=(VAVD)+(VDVC)+(VCVB)V_A - V_B = (V_A - V_D) + (V_D - V_C) + (V_C - V_B) VAVB=I×5Ω+Eeq+I×10ΩV_A - V_B = I \times 5\Omega + E_{eq} + I \times 10\Omega VAVB=15I+2VV_A - V_B = 15I + 2V.

Alternatively, VAVB=I×Rtotal=I×463ΩV_A - V_B = I \times R_{total} = I \times \frac{46}{3}\Omega.

Equating the two expressions for VAVBV_A - V_B: 15I+2=463I15I + 2 = \frac{46}{3}I 2=(46315)I=(46453)I=13I2 = \left(\frac{46}{3} - 15\right)I = \left(\frac{46 - 45}{3}\right)I = \frac{1}{3}I I=6AI = 6A.

Substituting II back into the equation VAVB=463IV_A - V_B = \frac{46}{3}I: VAVB=463×6=46×2=92VV_A - V_B = \frac{46}{3} \times 6 = 46 \times 2 = 92V.