Solveeit Logo

Question

Physics Question on Semiconductor electronics: materials, devices and simple circuits

In the circuit shown in the figure, the input voltage ViV_i is 20V,VBE=020 \, V , V_{BE} = 0 and VCE=0V_{CE} = 0 .The values of IB,ICI_B , I_C and β\beta are given by

A

IB=40μA,IC=10mA,β=250I_B = 40 \, \mu A, I_C = 10 \, mA , \beta = 250

B

IB=25μA,IC=5mA,β=200I_B = 25\, \mu A, I_C = 5 \, mA , \beta = 200

C

IB=20μA,IC=5mA,β=250I_B = 20\, \mu A, I_C = 5 \, mA , \beta = 250

D

IB=40μA,IC=5mA,β=125I_B = 40 \, \mu A, I_C = 5 \, mA , \beta = 125

Answer

IB=40μA,IC=5mA,β=125I_B = 40 \, \mu A, I_C = 5 \, mA , \beta = 125

Explanation

Solution

VBE=0V_{BE} = 0
VCE=0V_{CE} = 0
Vb=0V_b = 0
Ic=(200)4×103I_{c} = \frac{\left(20 -0\right)}{4 \times10^{3}}
Ic=5×103=5mAI_{c} = 5\times10^{-3} = 5\, mA
Vi=VBE+IBRBV_{i} = V_{BE} + I_{B} R_{B}
Vi=0+IBRBV_{i} = 0 + I_{B } R_{B}
20=IB×500×10320 = I_{B} \times500 \times10^{3}
IB=20500×103=40μAI_{B} = \frac{20}{500 \times10^{3}} = 40 \,\mu A
β=IcIb=25×10340×106=125\beta = \frac{I_{c}}{I_{b}} = \frac{25 \times10^{-3}}{40 \times10^{-6} } = 125