Solveeit Logo

Question

Physics Question on Combination of capacitors

In the circuit shown in the figure, the capacitor is initially uncharged and the key K is initially open in this condition, a current of 1 A flows through the 1 Ω resistor. The key is closed at a time t=t0. Choose the correct options(given e1=0.36e^{-1}=0.36)

A

R=3Ω

B

Before t=t0, i1-2A

C

At t=t0+7.2μ sec. current in the capacitor =0.6A

D

At t→∞, charge on the capacitor is 12μC

Answer

R=3Ω

Explanation

Solution

uncharged capacitor

x51x=+6,i1=volt,603=2A\frac{x-5}{1}\Rightarrow\,\,x=+6\,,\,i_1=volt,\frac{6-0}{3}=2A
R=1563\frac{15-6}{3}=3Ω\Omega
after switching on :
charged capacitor \Rightarrow capacitor

εeq=153+51+0312+11+13=6volt\varepsilon_{eq}=\frac{\frac{15}{3}+\frac{5}{1}+\frac{0}{3}}{\frac{1}{2}+\frac{1}{1}+\frac{1}{3}}=6\,volt

1req=13+11+1335Ω\frac{1}{r_{eq}}=\frac{1}{3}+\frac{1}{1}+\frac{1}{3}\Rightarrow\frac{3}{5}\Omega
Steady-state charge on the capacitor
q=CV=(2μ2\mu)(6)=12μc(6)=12\mu c
Req=35+3=185Ω,imax=εeqReq=6185=53AR_{eq}=\frac{3}{5}+3=\frac{18}{5}\Omega,\,i_{max}=\frac{\varepsilon_{eq}}{R_{eq}}=\frac{6}{\frac{18}{5}}=\frac{5}{3}A
ReqC=185×2Ω=365μsec.R_{eq}C=\frac{18}{5}\times2\Omega=\frac{36}{5}\mu\,sec.
tRc=7.2365μ=1\frac{t}{R_c}=\frac{7.2}{\frac{36}{5}}\mu=1
i(t)=εeqReqetReqC=53e1=53×0.36i(t)=\frac{\varepsilon_{eq}}{R_{eq}}e^-{\frac{t}{R_{eq}C}}=\frac{5}{3}e^{-1}=\frac{5}{3}\times0.36
i=0.6Ai=0.6A
At steady state, voltage across capacitor = 6 V
Therefore, Q = 6 × 2 = 12μC
So, all the options are correct.