Solveeit Logo

Question

Question: In the circuit shown in the figure, \(R{\text{ }} = {\text{ }}\sqrt {\dfrac{L}{C}} \). Switch \(S\) ...

In the circuit shown in the figure, R = LCR{\text{ }} = {\text{ }}\sqrt {\dfrac{L}{C}} . Switch SS closed at time t = 0t{\text{ }} = {\text{ }}0. The current through CC and LL would be equal after a time tt equal to

A. CRCR\:
B. CR ln(2)CR{\text{ }}\ln (2)\:
C. LR ln(2)\dfrac{L}{{R{\text{ }}\ln (2)}}\:
D. LRLR\:

Explanation

Solution

We will first evaluate an equation of saturation current. Then, we will use the equation current flow through the capacitor and the inductor. Finally, we will equate the two and find the final answer by performing appropriate substitutions.

Formula used:
I = VRI{\text{ }} = {\text{ }}\dfrac{V}{R}
I = Io etRCI{\text{ }} = {\text{ }}{I_o}{\text{ }}{e^{\dfrac{{ - t}}{{RC}}}}
I = Io (1  eRtL)I{\text{ }} = {\text{ }}{I_o}{\text{ }}\left( {1{\text{ }} - {\text{ }}{e^{\dfrac{{ - Rt}}{L}}}} \right)

Complete step by step answer:
The maximum current flowing in the circuit will be through the resistor. Thus,
Io = VR{I_o}{\text{ }} = {\text{ }}\dfrac{V}{R}
Now, the current flow through the capacitor is
IC = Io etRC{I_C}{\text{ }} = {\text{ }}{I_o}{\text{ }}{e^{\dfrac{{ - t}}{{RC}}}}
Putting in the value of Io{I_o}, we get
IC = VR etRC{I_C}{\text{ }} = {\text{ }}\dfrac{V}{R}{\text{ }}{e^{\dfrac{{ - t}}{{RC}}}}
Then, the current flow through the inductor, we get
IL = Io (1  eRtL){I_L}{\text{ }} = {\text{ }}{I_o}{\text{ }}\left( {1{\text{ }} - {\text{ }}{e^{\dfrac{{ - Rt}}{L}}}} \right)
Putting in the value of Io{I_o}, we get
IL = VR (1  eRtL){I_L}{\text{ }} = {\text{ }}\dfrac{V}{R}{\text{ }}\left( {1{\text{ }} - {\text{ }}{e^{\dfrac{{ - Rt}}{L}}}} \right)

Now, as per the question the current through the capacitor and the inductor are equal.Thus, we equate the same, we get
VR etRC = VR (1  eRtL)\dfrac{V}{R}{\text{ }}{e^{\dfrac{{ - t}}{{RC}}}}{\text{ }} = {\text{ }}\dfrac{V}{R}{\text{ }}\left( {1{\text{ }} - {\text{ }}{e^{\dfrac{{ - Rt}}{L}}}} \right)
Canceling VV and RR on both sides, we get
etRC = 1  eRtL  (i){e^{\dfrac{{ - t}}{{RC}}}}{\text{ }} = {\text{ }}1{\text{ }} - {\text{ }}{e^{\dfrac{{ - Rt}}{L}}}{\text{ }} - - - - - - - - - - - - - - - {\text{ }}(i)
Now, we are given that R = LCR{\text{ }} = {\text{ }}\sqrt {\dfrac{L}{C}} .
Substituting this value in eRtL{e^{\dfrac{{ - Rt}}{L}}}, we get
eLC tL  (ii){e^{\dfrac{{ - \sqrt {\dfrac{L}{C}} {\text{ }}t}}{L}}}{\text{ }} - - - - - - - - - {\text{ }}(ii)
We can write L = L2L{\text{ }} = {\text{ }}\sqrt {{L^2}} .
Thus, equation (ii)(ii), we get
eLL2C t{e^{ - \sqrt {\dfrac{L}{{{L^2}C}}} {\text{ }}t}}
Further, we get
e1LC t  (iii){e^{ - \sqrt {\dfrac{1}{{LC}}} {\text{ }}t}}{\text{ }} - - - - - - - - - {\text{ }}(iii)

Now, we can write
1LC = 1LC × C2\sqrt {\dfrac{1}{{LC}}} {\text{ }} = {\text{ }}\sqrt {\dfrac{1}{{\dfrac{L}{C}{\text{ }} \times {\text{ }}{C^2}}}}
That means we can write
1LC = 1RC\sqrt {\dfrac{1}{{LC}}} {\text{ }} = {\text{ }}\dfrac{1}{{RC}}
Thus, equation (iii)(iii)turns out to be
etRC{e^{\dfrac{{ - t}}{{RC}}}}
Substituting this in equation (ii)(ii), we get
etRC{e^{\dfrac{{ - t}}{{RC}}}}
Thus, equation (i)(i) becomes
etRC = 1  etRC{e^{\dfrac{{ - t}}{{RC}}}}{\text{ }} = {\text{ }}1{\text{ }} - {\text{ }}{e^{\dfrac{{ - t}}{{RC}}}}
Then, we can write
2 etRC = 12{\text{ }}{e^{\dfrac{{ - t}}{{RC}}}}{\text{ }} = {\text{ }}1
Then, we get
etRC = 12{e^{\dfrac{{ - t}}{{RC}}}}{\text{ }} = {\text{ }}\dfrac{1}{2}

Then, taking natural logarithm on both sides, we get
ln(etRC) = ln(12)\ln \left( {{e^{\dfrac{{ - t}}{{RC}}}}} \right){\text{ }} = {\text{ }}\ln \left( {\dfrac{1}{2}} \right)
Further, we get
tRC = ln(12)\dfrac{{ - t}}{{RC}}{\text{ }} = {\text{ }}\ln \left( {\dfrac{1}{2}} \right)
Then, we get
tRC = ln(2)\dfrac{t}{{RC}}{\text{ }} = {\text{ }}\ln \left( 2 \right)
Thus, we get
t = RC ln(2)t{\text{ }} = {\text{ }}RC{\text{ }}\ln (2)

Hence, the correct option is B.

Note: Students should be cautious while manipulating the equations. Students should be especially cautious while doing the logarithmic manipulation as the fractions sometimes make the manipulation very clumsy.An inductor opposes the changing current in it. In simple words, when the current increases in the inductor, the inductor induces a current such that the induced current decreases the in-flowing current.