Solveeit Logo

Question

Question: In the circuit shown in figure, the currents $I_1, I_2$ and $I_3$ are shown in diagram below. Then,...

In the circuit shown in figure, the currents I1,I2I_1, I_2 and I3I_3 are shown in diagram below. Then,

A

I1=9877AI_1 = \frac{98}{77}A

B

I2=21277AI_2 = \frac{212}{77}A

C

I3=6077AI_3 = \frac{60}{77}A

D

I1+I2=12877AI_1 + I_2 = \frac{128}{77}A

Answer

None of the options are correct. The calculated values are: I1=3773AI_1 = \frac{37}{73} A, I2=10973AI_2 = \frac{109}{73} A, and I3=9573AI_3 = \frac{95}{73} A.

Explanation

Solution

1. Define Node Potentials:

Let the potential of the bottom wire (common ground) be V0=0VV_0 = 0V. Based on the battery connections:

  • Potential at node A (positive terminal of 8V battery) is VA=8VV_A = 8V.

  • Potential at node C (positive terminal of 6V battery) is VC=6VV_C = 6V.

Let the potential at node B be VBV_B. Let the potential at node D (junction of the two 1Ω resistors in the middle branch, and where I3I_3 originates) be VDV_D.

2. Express Currents in terms of Node Potentials:

  • Current I2I_2 (from A to D through 1Ω): I2=VAVD1=8VD1I_2 = \frac{V_A - V_D}{1} = \frac{8 - V_D}{1}

  • Current I1I_1 (from D to C through 1Ω): I1=VDVC1=VD61I_1 = \frac{V_D - V_C}{1} = \frac{V_D - 6}{1}

  • Current I3I_3 (from D to 0V through 5Ω): I3=VD05=VD5I_3 = \frac{V_D - 0}{5} = \frac{V_D}{5}

  • Current from A to B through 2Ω: IAB=VAVB2=8VB2I_{AB} = \frac{V_A - V_B}{2} = \frac{8 - V_B}{2}

  • Current from B to C through 3Ω: IBC=VBVC3=VB63I_{BC} = \frac{V_B - V_C}{3} = \frac{V_B - 6}{3}

  • Current from B to D through 1Ω: IBD=VBVD1=VBVDI_{BD} = \frac{V_B - V_D}{1} = V_B - V_D

3. Apply Kirchhoff's Current Law (KCL):

At Node B:

Sum of currents entering B = Sum of currents leaving B

IAB=IBC+IBDI_{AB} = I_{BC} + I_{BD}

8VB2=VB63+(VBVD)\frac{8 - V_B}{2} = \frac{V_B - 6}{3} + (V_B - V_D)

Multiply by 6 to eliminate denominators:

3(8VB)=2(VB6)+6(VBVD)3(8 - V_B) = 2(V_B - 6) + 6(V_B - V_D)

243VB=2VB12+6VB6VD24 - 3V_B = 2V_B - 12 + 6V_B - 6V_D

243VB=8VB126VD24 - 3V_B = 8V_B - 12 - 6V_D

36=11VB6VD36 = 11V_B - 6V_D (Equation 1)

At Node D:

Sum of currents entering D = Sum of currents leaving D

I2+IBD=I1+I3I_2 + I_{BD} = I_1 + I_3

8VD1+(VBVD)=VD61+VD5\frac{8 - V_D}{1} + (V_B - V_D) = \frac{V_D - 6}{1} + \frac{V_D}{5}

Multiply by 5 to eliminate denominators:

5(8VD)+5(VBVD)=5(VD6)+VD5(8 - V_D) + 5(V_B - V_D) = 5(V_D - 6) + V_D

405VD+5VB5VD=5VD30+VD40 - 5V_D + 5V_B - 5V_D = 5V_D - 30 + V_D

40+5VB10VD=6VD3040 + 5V_B - 10V_D = 6V_D - 30

70=16VD5VB70 = 16V_D - 5V_B (Equation 2)

4. Solve the System of Equations:

We have the system:

  1. 11VB6VD=3611V_B - 6V_D = 36
  2. 5VB+16VD=70-5V_B + 16V_D = 70

Multiply Equation 1 by 5: 55VB30VD=18055V_B - 30V_D = 180

Multiply Equation 2 by 11: 55VB+176VD=770-55V_B + 176V_D = 770

Add the two modified equations:

(55VB55VB)+(30VD+176VD)=180+770(55V_B - 55V_B) + (-30V_D + 176V_D) = 180 + 770

146VD=950146V_D = 950

VD=950146=47573VV_D = \frac{950}{146} = \frac{475}{73} V

Substitute VDV_D back into Equation 1:

11VB6(47573)=3611V_B - 6\left(\frac{475}{73}\right) = 36

11VB=36+28507311V_B = 36 + \frac{2850}{73}

11VB=36×73+285073=2628+285073=54787311V_B = \frac{36 \times 73 + 2850}{73} = \frac{2628 + 2850}{73} = \frac{5478}{73}

VB=547811×73=49873VV_B = \frac{5478}{11 \times 73} = \frac{498}{73} V

5. Calculate the Currents I1,I2,I3I_1, I_2, I_3:

I1=VD6=475736=4756×7373=47543873=3773AI_1 = V_D - 6 = \frac{475}{73} - 6 = \frac{475 - 6 \times 73}{73} = \frac{475 - 438}{73} = \frac{37}{73} A

I2=8VD=847573=8×7347573=58447573=10973AI_2 = 8 - V_D = 8 - \frac{475}{73} = \frac{8 \times 73 - 475}{73} = \frac{584 - 475}{73} = \frac{109}{73} A

I3=VD5=15×47573=9573AI_3 = \frac{V_D}{5} = \frac{1}{5} \times \frac{475}{73} = \frac{95}{73} A

6. Compare with Options:

(A) I1=9877AI_1 = \frac{98}{77}A. Our I1=3773AI_1 = \frac{37}{73}A. (Incorrect)

(B) I2=21277AI_2 = \frac{212}{77}A. Our I2=10973AI_2 = \frac{109}{73}A. (Incorrect)

(C) I3=6077AI_3 = \frac{60}{77}A. Our I3=9573AI_3 = \frac{95}{73}A. (Incorrect)

(D) I1+I2=12877AI_1 + I_2 = \frac{128}{77}A. Our I1+I2=3773+10973=14673=2AI_1 + I_2 = \frac{37}{73} + \frac{109}{73} = \frac{146}{73} = 2A. (Incorrect)

Based on the calculations, none of the provided options are correct.