Solveeit Logo

Question

Question: In the binomial expansion of \[{\left( {1 + ax} \right)^n}\] , where \[a\] and \[n\] are constants, ...

In the binomial expansion of (1+ax)n{\left( {1 + ax} \right)^n} , where aa and nn are constants, the coefficient of xx is 1515 .The coefficient of x2{x^2} and of x3{x^3} are equal. What is the value of aa and of nn ?

Explanation

Solution

In order to find the value of aa and nn we will first use the formula of binomial expansion i.e., (1+ax)n=1+n(ax)+n(n1)2!(ax)2+.....+n(n1)(n2)...(nr+1)r!(ax)r+.....{\left( {1 + ax} \right)^n} = 1 + n\left( {ax} \right) + \dfrac{{n \cdot \left( {n - 1} \right)}}{{2!}}{\left( {ax} \right)^2} + ..... + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)...\left( {n - r + 1} \right)}}{{r!}}{\left( {ax} \right)^r} + ..... Now first we will equate the coefficient of xx with 1515 . After that we will equate the coefficients of x2{x^2} and of x3{x^3} and simplify to get the value of aa and of nn and hence we get the required result.

Complete step by step answer:
We know that
The formula for the binomial expansion of (1+ax)n{\left( {1 + ax} \right)^n} is:
(1+ax)n=1+n(ax)+n(n1)2!(ax)2+n(n1)(n2)3!(ax)3+.....+n(n1)(n2)...(nr+1)r!(ax)r+.....{\left( {1 + ax} \right)^n} = 1 + n\left( {ax} \right) + \dfrac{{n \cdot \left( {n - 1} \right)}}{{2!}}{\left( {ax} \right)^2} + \dfrac{{n \cdot \left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}{\left( {ax} \right)^3} + ..... + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)...\left( {n - r + 1} \right)}}{{r!}}{\left( {ax} \right)^r} + .....
Therefore, the coefficient of xx is anan
the coefficient of x2{x^2} is n(n1)2!(a)2\dfrac{{n\left( {n - 1} \right)}}{{2!}}{\left( a \right)^2}
and the coefficient of x3{x^3} is n(n1)(n2)3!(a)3\dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}{\left( a \right)^3}
Now it is given that
the coefficient of xx is 1515
an=15 (i)\Rightarrow an = 15{\text{ }} - - - \left( i \right)
And the coefficient of x2{x^2} and of x3{x^3} are equal
n(n1)2!(a)2=n(n1)(n2)3!(a)3 (ii)\Rightarrow \dfrac{{n\left( {n - 1} \right)}}{{2!}}{\left( a \right)^2} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}{\left( a \right)^3}{\text{ }} - - - \left( {ii} \right)
Now, from equation (ii)\left( {ii} \right) on cancelling the like terms, we get
12!=n23!a\dfrac{1}{{2!}} = \dfrac{{n - 2}}{{3!}}a
We know that
n!=n(n1)!n! = n \cdot \left( {n - 1} \right)!
Therefore, we get
12!=n23×2!a\dfrac{1}{{2!}} = \dfrac{{n - 2}}{{3 \times 2!}}a
1=n23a\Rightarrow 1 = \dfrac{{n - 2}}{3}a
On multiplying by 33 on both sides, we get
3=(n2)a3 = \left( {n - 2} \right)a
3=an2a\Rightarrow 3 = an - 2a
Now on substituting the value of anan from equation (i)\left( i \right) we get
3=152a\Rightarrow 3 = 15 - 2a
2a=12\Rightarrow 2a = 12
On dividing by 22 we get
a=6\Rightarrow a = 6
So, from equation (i)\left( i \right) we have
an=15an = 15
n=15a\Rightarrow n = \dfrac{{15}}{a}
On substituting the value of aa we get
n=156\Rightarrow n = \dfrac{{15}}{6}
n=2.5\Rightarrow n = 2.5
Hence, we get the value of aa as 66 and the value of nn as 2.52.5

Note:
Students must know the binomial expansion of (1+ax)n{\left( {1 + ax} \right)^n} .Also note that the formula for binomial expansion of (1+ax)n{\left( {1 + ax} \right)^n} can also be written as:
(1+ax)n=nC0(1)(ax)0+nC1(1)n1(ax)1+nC2(1)n2(ax)2+...+nCn(1)0(ax)n{\left( {1 + ax} \right)^n} = {}^n{C_0}\left( 1 \right){\left( {ax} \right)^0} + {}^n{C_1}{\left( 1 \right)^{n - 1}}{\left( {ax} \right)^1} + {}^n{C_2}{\left( 1 \right)^{n - 2}}{\left( {ax} \right)^2} + ... + {}^n{C_n}{\left( 1 \right)^0}{\left( {ax} \right)^n}
where nCr=n!(nr)!r!{}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}
Here nC0,nC1,nC2,....,nCn{}^n{C_0},{}^n{C_1},{}^n{C_2},....,{}^n{C_n} are called binomial coefficients. And the total number of terms in the expansion of (1+ax)n{\left( {1 + ax} \right)^n} are (n+1)\left( {n + 1} \right) .These are a few points about binomial expansion. You should keep all these things in your mind while solving the questions of binomial expansion.