Solveeit Logo

Question

Mathematics Question on Binomial theorem

In the binomial expansion of (ab)n,n5,{{(a-b)}^{n}},\,\,n\,\,\ge \,5, the sum of 5th5^{th} and 6th6^{th} term is zero. Then, ab\frac{a}{b} is equal to

A

n42\frac{n-4}{2}

B

n43\frac{n-4}{3}

C

n45\frac{n-4}{5}

D

n44\frac{n-4}{4}

Answer

n45\frac{n-4}{5}

Explanation

Solution

Given expansion is (ab)n.{{(a-b)}^{n}}.
\therefore T5=nC4(a)(n4)(b)4{{T}_{5}}{{=}^{n}}{{C}_{4}}{{(a)}^{(n-4)}}{{(-b)}^{4}}
and T6=nC5(a)(n5)(b)5{{T}_{6}}{{=}^{n}}{{C}_{5}}{{(a)}^{(n-5)}}{{(-b)}^{5}}
According to the given condition,
T5+T6=0{{T}_{5}}+{{T}_{6}}=0
\therefore nC4(a)n4(b)4+nC5(a)n5(b)5=0^{n}{{C}_{4}}{{(a)}^{n-4}}{{(-b)}^{4}}{{+}^{n}}{{C}_{5}}{{(a)}^{n-5}}{{(-b)}^{5}}=0
\Rightarrow (an4)(b)4[nC4+nC5(ba)]=0({{a}^{n-4}}){{(-b)}^{4}}\left[ ^{n}{{C}_{4}}{{+}^{n}}{{C}_{5}}\left( \frac{-b}{a} \right) \right]=0
\Rightarrow ab=nC5nC4=n(n1)(n2)(n3)(n4)5×4×3×2×1n(n1)(n2)(n3)4×3×2×1\frac{a}{b}=\frac{^{n}{{C}_{5}}}{^{n}{{C}_{4}}}=\frac{\frac{n(n-1)\,(n-2)\,(n-3)\,(n-4)}{5\times 4\times 3\times 2\times 1}}{\frac{n(n-1)\,(n-2)\,(n-3)}{4\times 3\times 2\times 1}}
=(n4)5=\frac{(n-4)}{5}