Solveeit Logo

Question

Mathematics Question on Binomial theorem

In the binomial expansion of (1+x)15(1+x)^{15} the coefficients of xrx^r and xr+3x^{r+3} are equal Then rr is _______

A

4

B

6

C

8

D

7

Answer

6

Explanation

Solution

Given, (1+x)15(1+x)^{15}
Now, Tr+1=15CrxrT_{r+1}={ }^{15} C_{r} x^{r}
and T(r+3)+1=15Cr+3xr+3T_{(r+3)+1}={ }^{15} C_{r+3} x^{r+3}
According to question
coefficient of xr=x^{r}= coefficient of xr+3x^{r+3}
15Cr=15Cr+3\Rightarrow { }^{15} C_{r}={ }^{15} C_{r+3}
15!r!(15r)!=15!(r+3)!(12r)!\Rightarrow \frac{15 !}{r !(15-r) !}=\frac{15 !}{(r+3) !(12-r) !}
1(15r)(14r)(13r)\Rightarrow \frac{1}{(15-r)(14-r)(13-r)}
=1(r+3)(r+2)(r+1)=\frac{1}{(r+3)(r+2)(r+1)}
(r+1)(r+2)(r+3)=(15r)\Rightarrow(r+1)(r+2)(r+3)=(15-r)
(r2+3r+2)(r+3)=(21029r+r2)\Rightarrow\left(r^{2}+3 r+2\right)(r+3)=\left(210-29 r+ r^{2}\right)
r3+3r2+2r+3r2+9r+6\Rightarrow r^{3}+3 r^{2}+2 r+3 r^{2}+9 r+6
=2930377r+13r2210r+29r2r3=2930-377 r+13 r^{2}-210 r+29 r^{2}-r^{3}
2r336r2+598r2924=0\Rightarrow 2 r^{3}-36 r^{2}+598 r-2924=0
r318r2+299r1462=0\Rightarrow r^{3}-18 r^{2}+299 r-1462=0
(r6)(r212r+227)=0\Rightarrow (r-6)\left(r^{2}-12 r+227\right)=0
r=6\Rightarrow r=6 and r212r+227=0r^{2}-12 r+227=0 gives imaginary roots.
Alternate Method
15Cr=15Cr+3{ }^{15} C_{r}={ }^{15} C_{r+3}
r+(r+3)=15\Rightarrow r+(r+3)=15
(nCx=nCy)\left(\because{ }^{n} C_{x}={ }^{n} C_{y}\right)
2r+3=15\Rightarrow 2 r+3=15
x+y=n\Rightarrow x +y =n
2r=12\Rightarrow 2 r =12
r=6\Rightarrow r=6