Question
Mathematics Question on Binomial theorem
In the binomial expansion of (1+x)15 the coefficients of xr and xr+3 are equal Then r is _______
A
4
B
6
C
8
D
7
Answer
6
Explanation
Solution
Given, (1+x)15
Now, Tr+1=15Crxr
and T(r+3)+1=15Cr+3xr+3
According to question
coefficient of xr= coefficient of xr+3
⇒15Cr=15Cr+3
⇒r!(15−r)!15!=(r+3)!(12−r)!15!
⇒(15−r)(14−r)(13−r)1
=(r+3)(r+2)(r+1)1
⇒(r+1)(r+2)(r+3)=(15−r)
⇒(r2+3r+2)(r+3)=(210−29r+r2)
⇒r3+3r2+2r+3r2+9r+6
=2930−377r+13r2−210r+29r2−r3
⇒2r3−36r2+598r−2924=0
⇒r3−18r2+299r−1462=0
⇒(r−6)(r2−12r+227)=0
⇒r=6 and r2−12r+227=0 gives imaginary roots.
Alternate Method
15Cr=15Cr+3
⇒r+(r+3)=15
(∵nCx=nCy)
⇒2r+3=15
⇒x+y=n
⇒2r=12
⇒r=6