Solveeit Logo

Question

Question: In the arrangement shown, the pulleys are fixed and ideal, the strings are light, m<sub>1</sub>\> m<...

In the arrangement shown, the pulleys are fixed and ideal, the strings are light, m1> m2, and S is a spring balance which is itself massless. The reading of S (in units of mass) is –

A

m1 – m2

B

12\frac { 1 } { 2 } (m1 + m2)

C

m1 m2 m1+m2\frac { \mathrm { m } _ { 1 } \mathrm {~m} _ { 2 } } { \mathrm {~m} _ { 1 } + \mathrm { m } _ { 2 } }

D

2 m1 m2 m1+m2\frac { 2 \mathrm {~m} _ { 1 } \mathrm {~m} _ { 2 } } { \mathrm {~m} _ { 1 } + \mathrm { m } _ { 2 } }

Answer

2 m1 m2 m1+m2\frac { 2 \mathrm {~m} _ { 1 } \mathrm {~m} _ { 2 } } { \mathrm {~m} _ { 1 } + \mathrm { m } _ { 2 } }

Explanation

Solution

Acceleration of system = m1m2m1+m2\frac { m _ { 1 } - m _ { 2 } } { m _ { 1 } + m _ { 2 } } g

Tension in string = 2 m1 m2 m1+m2\frac { 2 \mathrm {~m} _ { 1 } \mathrm {~m} _ { 2 } } { \mathrm {~m} _ { 1 } + \mathrm { m } _ { 2 } } g

reading of spring balance is T.