Solveeit Logo

Question

Physics Question on Newtons Laws of Motion

In the arrangement shown in the figure, the ends P and Q of an unstretchable string move downwards with uniform speed U. Pulleys A and B are fixed. Mass M moves upwards with a speed

A

2Ucosθ2Ucos\theta

B

Ucosθ\frac{U}{cos\theta}

C

2Ucosθ\frac{2U}{cos\theta}

D

Ucosθ\theta

Answer

Ucosθ\frac{U}{cos\theta}

Explanation

Solution

In the right angle Δ\DeltaPQR
t2=c2+y2\, \, \, \, \, t^2=c^2+y^2
Differentiating this
equation with respect to
time, we ge
2tdldt=0+2ydydt2t\frac{dl}{dt}=0+2y\frac{dy}{dt}
or (dydt)=ly(dldt) \, \, \, \, \, \, \, \big(-\frac{dy}{dt}\bigg)=\frac{l}{y}\bigg(-\frac{dl}{dt}\bigg)
Here,dydt=vM1y=1cosθHere, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, -\frac{dy}{dt}=v_{M} \, \, \, \Rightarrow \, \, \, \frac{1}{y}=\frac{1}{cos\theta}
and -dl / dt =U
Hence,vM=Ucosθ \, \, \, \, \, \, \, \, \, \, v_M=\frac{U}{cos\theta}
\therefore \, \, Correct option is (b).
Hence ,vM=Ucosθ \, \, \, \, \, \, \, \, \, \, v_M=\frac{U}{cos\theta}
\therefore \, \, Correct option is (b).