Solveeit Logo

Question

Question: In the arrangement of resistances shown in the figure, the potential difference between \(B\) and \(...

In the arrangement of resistances shown in the figure, the potential difference between BB and DD will be zero when the unknown resistance XX is
A. 4 Ω4{\text{ }}\Omega \:
B. Ω{\text{2 }}\Omega \:
C. Ω{\text{3 }}\Omega \:
D. Ω{\text{6 }}\Omega \:

Explanation

Solution

We will use the concept of wheatstone bridge principle. Then, we will apply the principle in the given circuit. Finally we will evaluate the numerical value of the unknown resistance.

Formulae used:
RSeries = R1 + R2 + .... + Rn{R_{Series}}{\text{ }} = {\text{ }}{R_1}{\text{ }} + {\text{ }}{R_2}{\text{ }} + {\text{ }}....{\text{ }} + {\text{ }}{R_n}
1RParallel = 1R1 + 1R2 + ... + 1Rn\Rightarrow \dfrac{1}{{{R_{Parallel}}}}{\text{ }} = {\text{ }}\dfrac{1}{{{R_1}}}{\text{ }} + {\text{ }}\dfrac{1}{{{R_2}}}{\text{ }} + {\text{ }}...{\text{ }} + {\text{ }}\dfrac{1}{{{R_n}}}
R1R2 = R3R4\Rightarrow \dfrac{{{R_1}}}{{{R_2}}}{\text{ }} = {\text{ }}\dfrac{{{R_3}}}{{{R_4}}}
I = VR\Rightarrow I{\text{ }} = {\text{ }}\dfrac{V}{R}

Complete step by step answer:
Here, we are given a few resistors.
Let, R1 = 12 Ω{R_1}{\text{ }} = {\text{ }}12{\text{ }}\Omega
R2 = 4 Ω{R_2}{\text{ }} = {\text{ }}4{\text{ }}\Omega
R3 = X Ω\Rightarrow {R_3}{\text{ }} = {\text{ }}X{\text{ }}\Omega
R4 = 1 Ω\Rightarrow {R_4}{\text{ }} = {\text{ }}1{\text{ }}\Omega
R5 = 1 Ω\Rightarrow {R_5}{\text{ }} = {\text{ }}1{\text{ }}\Omega
R6 = 3 Ω\Rightarrow {R_6}{\text{ }} = {\text{ }}3{\text{ }}\Omega
R7 = 1 Ω\Rightarrow {R_7}{\text{ }} = {\text{ }}1{\text{ }}\Omega
Now, clearly R4{R_4} and R5{R_5} are parallel to each other. Thus, resistance across CDCD is,
1RCD = 1R4 + 1R5\dfrac{1}{{{R_{CD}}}}{\text{ }} = {\text{ }}\dfrac{1}{{{R_4}}}{\text{ }} + {\text{ }}\dfrac{1}{{{R_5}}}

Substituting the values, we get
RCD = 0.5 Ω{R_{CD}}{\text{ }} = {\text{ }}0.5{\text{ }}\Omega
Again, resistance across ABAB is,
RAB = R1 + R2{R_{AB}}{\text{ }} = {\text{ }}{R_1}{\text{ }} + {\text{ }}{R_2}
Substituting the values, we get
RAB = 16 Ω{R_{AB}}{\text{ }} = {\text{ }}16{\text{ }}\Omega
Again, resistance across BCBC,
RBC = R3{R_{BC}}{\text{ }} = {\text{ }}{R_3}
Substituting the value, we get
RBC = X Ω{R_{BC}}{\text{ }} = {\text{ }}X{\text{ }}\Omega
Also, resistance across ADAD,
RAD = R6 + R7{R_{AD}}{\text{ }} = {\text{ }}{R_6}{\text{ }} + {\text{ }}{R_7}
Substituting the values, we get
RAD = 4 Ω{R_{AD}}{\text{ }} = {\text{ }}4{\text{ }}\Omega

Now, for the potential difference across BDBD to be zero, the ratio of the resistances across the arms of the two sides should be equal. This is known as the wheatstone bridge principle.The equation of the same is,
RABRAD = RBCRCD\dfrac{{{R_{AB}}}}{{{R_{AD}}}}{\text{ }} = {\text{ }}\dfrac{{{R_{BC}}}}{{{R_{CD}}}}
Substituting the values, we get
164 = X0.5\dfrac{{16}}{4}{\text{ }} = {\text{ }}\dfrac{X}{{0.5}}
Further, we get
X = 0.5 × 164X{\text{ }} = {\text{ }}0.5{\text{ }} \times {\text{ }}\dfrac{{16}}{4}
After further calculation, we get
X = 2 Ω\therefore X{\text{ }} = {\text{ }}2{\text{ }}\Omega

Hence, the correct option is B.

Note: Students should remember that the wheatstone bridge principle is applicable for parallel positions. Thus, they should firstly very carefully observe the given circuit.Students often make mistakes while judging the type of connection (parallel or circuit). This makes them wrongly evaluate the net resistance. This will further make them not arrive at the correct answer. Students should keep the actual idea behind this method as that the potential difference between two points is zero only when their potentials are equal. Thus, for them to be equal the arms on either sides of the points are proportional as this will make same amount of current flowing through each will be the same