Solveeit Logo

Question

Question: In the argand¢s plane the locus of z ¹ 1 such that arg\(\left\{ \frac{3}{2}\left( \frac{2z^{2} - 5z ...

In the argand¢s plane the locus of z ¹ 1 such that arg{32(2z25z+33z2z2)}\left\{ \frac{3}{2}\left( \frac{2z^{2} - 5z + 3}{3z^{2}–z–2} \right) \right\} = 2π3\frac{2\pi}{3} is :

A

The straight line joining the points z = 32\frac{3}{2}, z = – 23\frac{2}{3}

B

The straight line joining the points z = – 32\frac{3}{2}, z = 23\frac{2}{3}

C

A segment of a circle passing through z = 32\frac{3}{2}, z = + 23\frac{2}{3}

D

A segment of a circle passing through z = + 32\frac{3}{2}, z = – 23\frac{2}{3}

Answer

A segment of a circle passing through z = + 32\frac{3}{2}, z = – 23\frac{2}{3}

Explanation

Solution

Sol. Here : 2z25z+33z2z2\frac{2z^{2} - 5z + 3}{3z^{2} - z - 2} = (z1)(2z3)(z1)(3z+2)\frac{(z - 1)(2z - 3)}{(z - 1)(3z + 2)}

= 2z33z+2\frac{2z - 3}{3z + 2} = 2(z32)3(z+23)\frac{2\left( z - \frac{3}{2} \right)}{3\left( z + \frac{2}{3} \right)}

Hence, the given condition reduces to ;

arg(z3/2z+2/3)\left( \frac{z - 3/2}{z + 2/3} \right) = 2π3\frac{2\pi}{3}, Ž z describes the segment of a circle through z = 32\frac{3}{2} and z = – 23\frac{2}{3} at which the chord subtends an angle 2π3\frac{2\pi}{3}